266 research outputs found

    High pressure torsion of nickel powders obtained by electrodeposition

    Get PDF
    A new synthesis route for the production of bulk nanostructured materials is presented. Fine Ni powder was made by selected appropriate electrolysis conditions. A compact material with an average grain size below 40 nm was obtained by subsequent cold pressing. Then, using the high pressure torsion (HPT) deformation technique dense bulk nanocrystalline Ni was achieved. The detailed structural investigations of the asprepared and HPT deformed Ni powder, including X-ray diffraction (XRD) and transmission electron microscopy (TEM), reveal in both cases the presence of a face centered cubic (FCC) phase without presence of any oxides. Coherently scattering domain size measurements by XRD show a value of 24 nm for the as-deposited powder and an even smaller value of 13.5 nm after HPT deformation. In addition, optical emission spectroscopy was employed to determine the impurity content of the obtained nanostructured material, showing a relatively low content of 0.9 % carbon and oxygen. The microhardness increased after deformation from (1.5 ± 0.08) GPa for the as-deposited Ni powder to (6.6 ± 0.2) GPa for the HPT deformed Ni powder. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/2061

    Imaging of compartmentalised intracellular nitric oxide, induced during bacterial phagocytosis, using a metalloprotein–gold nanoparticle conjugate

    Get PDF
    Nitric oxide (NO) plays an essential role within the immune system since it is involved in the break-down of infectious agents such as viruses and bacteria. The ability to measure the presence of NO in the intracellular environment would provide a greater understanding of the pathophysiological mechanism of this important molecule. Here we report the detection of NO from the intracellular phagolysosome using a fluorescently tagged metalloprotein–gold nanoparticle conjugate. The metalloprotein cytochrome c, fluorescently tagged with an Alexa Fluor dye, was self-assembled onto gold nanoparticles to produce a NO specific nanobiosensor. Upon binding of NO, the cytochrome c protein changes conformation which induces an increase of fluorescence intensity of the tagged protein proportional to the NO concentration. The nanobiosensor was sensitive to NO in a reversible and selective manner, and exhibited a linear response at NO concentrations between 1 and 300 μM. In RAW264.7γ NO− macrophage cells, the nanobiosensor was used to detect the presence of NO that had been endogenously generated upon stimulation of the cells with interferon-γ and lipopolysaccharide, or spontaneously released following treatment of the cells with a NO donor. Significantly, the nanobiosensor was shown to be taken up by the macrophages within phagolysosomes, i.e., the precise location where the NO, together with other species, destroys bacterial infection. The nanobiosensor measured, for the first time, increasing concentrations of NO produced during combined stimulation and phagocytosis of Escherichia coli bacteria from within localised intracellular phagolysosomes, a key part of the immune system

    Isokinetic profile of Elite Serbian female judoists

    Get PDF
    Elite judo athletes undergo vigorous training to achieve outstanding results. In pursuit of achieving competitive success, the occurrence of injuries amongst judo athletes is not rare. The study aimed to perform a knee flexors and extensors isokinetic torque analysis in elite female judo athletes. Fifty\u2010eight elite female judo athletes of the Serbian national team (21.02 \ub1 3.11 years; 62.36 \ub1 11.91 kg, 165.04 \ub1 10.24 cm, training experience 12.72 \ub1 2.98 years) volunteered to participate in this study. The range of motion (ROM) was set at 90\u2070. Testing was performed in a concentric\u2013concentric mode for the testing speed of 60 \u2070/s. Five maximal voluntary contractions of knee extensors and knee flexors muscle groups were measured for both legs. The obtained data showed a statistically significant difference in absolute torque values among different categories as heavier athletes demonstrated higher values. Post hoc analysis showed a significant difference between weight categories, as heavier athletes demonstrated higher values, while no significant differences in normalized torque values for different weight categories were observed. The implementation of new elements and training modalities may improve performance and prevent lateral asymmetry, thus reducing the risk of injury

    Vrste plesni na kukuruznom klipu uskladištenom u koševima na teritoriji opština Vrnjačka Banja i Kruševac

    Get PDF
    Corn cob owned by individual producers is stored on multiple ways: in barns, attics, sheds etc. If corn cob is not dried properly when stord in barns, it represents ideal foundation for field and storage molds.For our examinations we used corn from 20 barns originating from ten plain and mountain villages in Vrnjacka Banja municipality. Mold isolation was performed on saburo ager on temperature of 27oC. Most commonly isolated sorts of mold were: Penicillium sp., Aspergillus ustus, Alternaria tenuis, Yeast, Mucor mucedo, Fusarium roseum, Aspergillus candidus, Trichoderma viride and Aspergillus flavus. Our results show that dominant role was frequently represented by field molds – Alternaria and Fusarium, most common of storage molds were molds from the genus Aspergillus and Penicillium, and most common progressive decay molds were Mucor and Rhisopos. Infection of grain was by rule 100% with rare exeptions.Kukuruzni klip u vlasništvu individualnih proizvođača skladišti se na više načina: u koševima, tavanima, šupama i dr. Ukoliko se kukuruzni klip, nedovoljno osušen, skladišti u koševe on predstavlja idealnu podlogu za razvoj poljskih i skladišnih plesni. Za ispitivanja smo koristili kukuruz iz 20 koševa koji su poreklom iz 10 sela ravničarskog i planinskog predela sa područja opštine Vrnjačka Banja. Izolaciju plesni vršili smo na Saburo agaru na temperaturi od 27°C. Najčešće su izolovane sledeće vrste plesni: Penicillium sp., Aspergillus ustus, Alternaria tenuis, Kvasnice, Mucor mucedo, Fusarium roseum, Aspergillus candidus, Trichoderma viride i Aspergillus flavus. Naši rezultati pokazuju da su dominantnu ulogu u frekvenciji predstavljale plesni s polja- Alternaria i Fusarium, od plesni uskladištenja najučestalije su bile plesni iz roda Aspergillus i Penicillium, a od plesni uznapredovanog kvarenja Mucor i Rhisopus. Infekcija zrna je bila po pravilu 100% sa retkim odstupanjima

    Framing Cutting-Edge Integrative Deep-Sea Biodiversity Monitoring via Environmental DNA and Optoacoustic Augmented Infrastructures

    Get PDF
    Deep-sea ecosystems are reservoirs of biodiversity that are largely unexplored, but their exploration and biodiscovery are becoming a reality thanks to biotechnological advances (e.g., omics technologies) and their integration in an expanding network of marine infrastructures for the exploration of the seas, such as cabled observatories. While still in its infancy, the application of environmental DNA (eDNA) metabarcoding approaches is revolutionizing marine biodiversity monitoring capability. Indeed, the analysis of eDNA in conjunction with the collection of multidisciplinary optoacoustic and environmental data, can provide a more comprehensive monitoring of deep-sea biodiversity. Here, we describe the potential for acquiring eDNA as a core component for the expanding ecological monitoring capabilities through cabled observatories and their docked Internet Operated Vehicles (IOVs), such as crawlers. Furthermore, we provide a critical overview of four areas of development: (i) Integrating eDNA with optoacoustic imaging; (ii) Development of eDNA repositories and cross-linking with other biodiversity databases; (iii) Artificial Intelligence for eDNA analyses and integration with imaging data; and (iv) Benefits of eDNA augmented observatories for the conservation and sustainable management of deep-sea biodiversity. Finally, we discuss the technical limitations and recommendations for future eDNA monitoring of the deep-sea. It is hoped that this review will frame the future direction of an exciting journey of biodiscovery in remote and yet vulnerable areas of our planet, with the overall aim to understand deep-sea biodiversity and hence manage and protect vital marine resources

    Ibrutinib Unmasks Critical Role of Bruton Tyrosine Kinase in Primary CNS Lymphoma.

    Get PDF
    Bruton tyrosine kinase (BTK) links the B-cell antigen receptor (BCR) and Toll-like receptors with NF-κB. The role of BTK in primary central nervous system (CNS) lymphoma (PCNSL) is unknown. We performed a phase I clinical trial with ibrutinib, the first-in-class BTK inhibitor, for patients with relapsed or refractory CNS lymphoma. Clinical responses to ibrutinib occurred in 10 of 13 (77%) patients with PCNSL, including five complete responses. The only PCNSL with complete ibrutinib resistance harbored a mutation within the coiled-coil domain of CARD11, a known ibrutinib resistance mechanism. Incomplete tumor responses were associated with mutations in the B-cell antigen receptor-associated protein CD79B
    corecore