8,423 research outputs found

    Engineering of Low-Loss Metal for Nanoplasmonic and Metamaterials Applications

    Full text link
    We have shown that alloying a noble metal (gold) with another metal (cadmium), which can contribute two electrons per atom to a free electron gas, can significantly improve the metals optical properties in certain wavelength ranges and make them worse in the other parts of the spectrum. In particular, in the gold-cadmium alloy we have demonstrated a significant expansion of the spectral range of metallic reflectance to shorter wavelengths. The experimental results and the predictions of the first principles theory demonstrate an opportunity for the improvement and optimization of low-loss metals for nanoplasmonic and metamaterials applications.Comment: 14 Pages, 4 figure

    Nonlocal resistance and its fluctuations in microstructures of band-inverted HgTe/(Hg,Cd)Te quantum wells

    Full text link
    We investigate experimentally transport in gated microsctructures containing a band-inverted HgTe/Hg_{0.3}Cd_{0.7}Te quantum well. Measurements of nonlocal resistances using many contacts prove that in the depletion regime the current is carried by the edge channels, as expected for a two-dimensional topological insulator. However, high and non-quantized values of channel resistances show that the topological protection length (i.e. the distance on which the carriers in helical edge channels propagate without backscattering) is much shorter than the channel length, which is ~100 micrometers. The weak temperature dependence of the resistance and the presence of temperature dependent reproducible quasi-periodic resistance fluctuations can be qualitatively explained by the presence of charge puddles in the well, to which the electrons from the edge channels are tunnel-coupled.Comment: 8 pages, 4 figures, published versio

    Single Track Performance of the Inner Detector New Track Reconstruction (NEWT)

    Get PDF
    In a previous series of documents we have presented the new ATLAS track reconstruction chain (NEWT) and several of the involved components. It has become the default reconstruction application for the Inner Detector. However, a large scale validation of the reconstruction performance in both efficiency and track resolutions has not been given yet. This documents presents the results of a systematic single track validation of the new track reconstruction and puts it in comparison with results obtained with different reconstruction applications

    Excitonic effects in solids described by time-dependent density functional theory

    Get PDF
    Starting from the many-body Bethe-Salpeter equation we derive an exchange-correlation kernel fxcf_{xc} that reproduces excitonic effects in bulk materials within time-dependent density functional theory. The resulting fxcf_{xc} accounts for both self-energy corrections and the electron-hole interaction. It is {\em static}, {\em non-local} and has a long-range Coulomb tail. Taking the example of bulk silicon, we show that the α/q2- \alpha / q^2 divergency is crucial and can, in the case of continuum excitons, even be sufficient for reproducing the excitonic effects and yielding excellent agreement between the calculated and the experimental absorption spectrum.Comment: 6 pages, 1 figur

    Cyclotron resonance of extremely conductive 2D holes in high Ge content strained heterostructures

    Get PDF
    Cyclotron resonance has been observed in steady and pulsed magnetic fields from high conductivity holes in Ge quantum wells. The resonance positions, splittings and linewidths are compared to calculations of the hole Landau levels

    Temperature-dependent magnetospectroscopy of HgTe quantum wells

    Full text link
    We report on magnetospectroscopy of HgTe quantum wells in magnetic fields up to 45 T in temperature range from 4.2 K up to 185 K. We observe intra- and inter-band transitions from zero-mode Landau levels, which split from the bottom conduction and upper valence subbands, and merge under the applied magnetic field. To describe experimental results, realistic temperature-dependent calculations of Landau levels have been performed. We show that although our samples are topological insulators at low temperatures only, the signature of such phase persists in optical transitions at high temperatures and high magnetic fields. Our results demonstrate that temperature-dependent magnetospectroscopy is a powerful tool to discriminate trivial and topological insulator phases in HgTe quantum wells
    corecore