686 research outputs found

    Varying domain first-oder modal logic

    Get PDF

    The Power of Linear Combinations: Learning with Random Convolutions

    Full text link
    Following the traditional paradigm of convolutional neural networks (CNNs), modern CNNs manage to keep pace with more recent, for example transformer-based, models by not only increasing model depth and width but also the kernel size. This results in large amounts of learnable model parameters that need to be handled during training. While following the convolutional paradigm with the according spatial inductive bias, we question the significance of \emph{learned} convolution filters. In fact, our findings demonstrate that many contemporary CNN architectures can achieve high test accuracies without ever updating randomly initialized (spatial) convolution filters. Instead, simple linear combinations (implemented through efficient 1×11\times 1 convolutions) suffice to effectively recombine even random filters into expressive network operators. Furthermore, these combinations of random filters can implicitly regularize the resulting operations, mitigating overfitting and enhancing overall performance and robustness. Conversely, retaining the ability to learn filter updates can impair network performance. Lastly, although we only observe relatively small gains from learning 3×33\times 3 convolutions, the learning gains increase proportionally with kernel size, owing to the non-idealities of the independent and identically distributed (\textit{i.i.d.}) nature of default initialization techniques

    Don't Look into the Sun: Adversarial Solarization Attacks on Image Classifiers

    Full text link
    Assessing the robustness of deep neural networks against out-of-distribution inputs is crucial, especially in safety-critical domains like autonomous driving, but also in safety systems where malicious actors can digitally alter inputs to circumvent safety guards. However, designing effective out-of-distribution tests that encompass all possible scenarios while preserving accurate label information is a challenging task. Existing methodologies often entail a compromise between variety and constraint levels for attacks and sometimes even both. In a first step towards a more holistic robustness evaluation of image classification models, we introduce an attack method based on image solarization that is conceptually straightforward yet avoids jeopardizing the global structure of natural images independent of the intensity. Through comprehensive evaluations of multiple ImageNet models, we demonstrate the attack's capacity to degrade accuracy significantly, provided it is not integrated into the training augmentations. Interestingly, even then, no full immunity to accuracy deterioration is achieved. In other settings, the attack can often be simplified into a black-box attack with model-independent parameters. Defenses against other corruptions do not consistently extend to be effective against our specific attack. Project website: https://github.com/paulgavrikov/adversarial_solarizatio
    corecore