352 research outputs found

    The independent group looks at London's west end

    Get PDF
    In the early 1950s, British culture was dominated by welfare-state visions of urban reconstruction. These projections of a stable civic society were premised on a particular way of looking at and reading the metropolitan environment. At odds with this project, the Independent Group's discussions and collaborative work developed an alternative urban semiology, which found the city to be already rich in visual resources for fashioning a more profound form of social democracy. Soon, this critical engagement would develop in different directions, represented here by Lawrence Alloway's commentary on Piccadilly Circus in his essay 'City Notes' and the London footage inserted by John McHale into his film for the Smithsons' Berlin Hauptstadt project (both 1959). By the end of the 1950s, members of the erstwhile Independent Group had produced two contrasting critical accounts of how the metropolitan centre should be looked at, which challenged the strictures of post-war reconstruction in distinct and conflicting ways. © The Author(s), 2013

    VCP-dependent muscle degeneration is linked to defects in a dynamic tubular lysosomal network in vivo.

    Get PDF
    Lysosomes are classically viewed as vesicular structures to which cargos are delivered for degradation. Here, we identify a network of dynamic, tubular lysosomes that extends throughout Drosophila muscle, in vivo. Live imaging reveals that autophagosomes merge with tubular lysosomes and that lysosomal membranes undergo extension, retraction, fusion and fission. The dynamics and integrity of this tubular lysosomal network requires VCP, an AAA-ATPase that, when mutated, causes degenerative diseases of muscle, bone and neurons. We show that human VCP rescues the defects caused by loss of Drosophila VCP and overexpression of disease relevant VCP transgenes dismantles tubular lysosomes, linking tubular lysosome dysfunction to human VCP-related diseases. Finally, disruption of tubular lysosomes correlates with impaired autophagosome-lysosome fusion, increased cytoplasmic poly-ubiquitin aggregates, lipofuscin material, damaged mitochondria and impaired muscle function. We propose that VCP sustains sarcoplasmic proteostasis, in part, by controlling the integrity of a dynamic tubular lysosomal network

    Cellular and Molecular Responses Unique to Major Injury Are Dispensable for Planarian Regeneration

    Get PDF
    The fundamental requirements for regeneration are poorly understood. Planarians can robustly regenerate all tissues after injury, involving stem cells, positional information, and a set of cellular and molecular responses collectively called the “missing tissue” or “regenerative” response. follistatin, which encodes an extracellular Activin inhibitor, is required for the missing tissue response after head amputation and for subsequent regeneration. We found that follistatin is required for the missing tissue response regardless of the wound context, but causes regeneration failure only after head amputation. This head regeneration failure involves follistatin-mediated regulation of Wnt signaling at wounds and is not a consequence of a diminished missing tissue response. All tested contexts of regeneration, including head regeneration, could occur with a defective missing tissue response, but at a slower pace. Our findings suggest that major cellular and molecular programs induced specifically by large injuries function to accelerate regeneration but are dispensable for regeneration itself. In regenerative organisms, a large array of cellular responses are triggered at major injuries. However, which of these responses are fundamentally required for regeneration to occur remains unknown. Tewari et al. find that hallmark cellular and molecular responses induced uniquely at large injuries are dispensable for planarian regeneration. Keywords: regeneration; wound response; WnT signaling; TGF-β signaling; planarians; follistatinNational Institutes of Health (U.S.) (Grant R01GM080639

    Fermentative capability and aroma compound production by yeast strains isolated from Agave tequilana Weber juice

    Get PDF
    Five yeast strains isolated from agave juice were studied for their fermentative and aromatic capacity. The experiments were performed using agave juice supplemented with ammonium sulphate, as is commonly done in tequila distilleries. Three strains classified as Saccharomyces cerevisiae showed high biomass and ethanol production, as well as higher ethanol tolerance than those classified as Kloeckera africana and Kloeckera apiculata, which showed scarce growth. The results suggest that Kloeckera strains were affected by nutritional limitation and/or toxic compounds present in agave juice. Agave juice analyses showed a lower amino acid content than those reported in grape juice. S. cerevisiae strains produced predominantly amyl and isoamyl alcohols, n-propanol, 2-phenyl ethanol, succinic acid, glycerol, methanol, isoamyl acetate, ethyl hexanoate, acetaldehyde and isobutanol, whereas Kloeckera strains showed a high production of acetic acid, 2-phenyl ethyl acetate and ethyl acetate. The methanol concentration was significantly different among the yeasts studied. The diversity between three S. cerevisiae strains were higher for the aromatic profile than for genetic level and kinetic parameter. On the other hand, the diversity of Kloeckera yeasts were lower than Saccharomyces yeasts even when belonging to two different species

    The steady-state repertoire of human SCF Ubiquitin ligase complexes does not require ongoing Nedd8 conjugation

    Get PDF
    The human genome encodes 69 different F-box proteins (FBPs), each of which can potentially assemble with Skp1-Cul1-RING to serve as the substrate specificity subunit of an SCF ubiquitin ligase complex. SCF activity is switched on by conjugation of the ubiquitin- like protein Nedd8 to Cul1. Cycles of Nedd8 conjugation and deconjugation acting in conjunction with the Cul1-sequestering factor Cand1 are thought to control dynamic cycles of SCF assembly and disassembly, which would enable a dynamic equilibrium between the Cul1- RING catalytic core of SCF and the cellular repertoire of FBPs. To test this hypothesis, we determined the cellular composition of SCF complexes and evaluated the impact of Nedd8 conjugation on this steady-state. At least 42 FBPs assembled with Cul1 in HEK 293 cells, and the levels of Cul1-bound FBPs varied by over two orders of magnitude. Unexpectedly, quantitative mass spectrometry revealed that blockade of Nedd8 conjugation led to a modest increase, rather than a decrease, in the overall level of most SCF complexes. We suggest that multiple mechanisms including FBP dissociation and turnover cooperate to maintain the cellular pool of SCF ubiquitin ligases

    Homeostatic Presynaptic Plasticity Is Specifically Regulated by P/Q-type Ca2+ Channels at Mammalian Hippocampal Synapses

    Get PDF
    Summary: Voltage-dependent Ca2+ channels (VGCC) represent the principal source of Ca2+ ions driving evoked neurotransmitter release at presynaptic boutons. In mammals, presynaptic Ca2+ influx is mediated mainly via P/Q-type and N-type VGCC, which differ in their properties. Changes in their relative contributions tune neurotransmission both during development and in Hebbian plasticity. However, whether this represents a functional motif also present in other forms of activity-dependent regulation is unknown. Here, we study the role of VGCC in homeostatic plasticity (HSP) in mammalian hippocampal neurons using optical techniques. We find that changes in evoked Ca2+ currents specifically through P/Q-type, but not N-type, VGCC mediate bidirectional homeostatic regulation of both neurotransmitter release efficacy and the size of the major synaptic vesicle pools. Selective dependence of HSP on P/Q-type VGCC in mammalian terminals has important implications for phenotypes associated with P/Q-type channelopathies, including migraine and epilepsy. : Jeans at al. show that both basal neurotransmission and synaptic vesicle pool sizes are specifically regulated by the presynaptic P/Q-type voltage-gated Ca2+ channel during HSP at mammalian hippocampal synapses. This may shed light on mechanisms underlying phenotypes associated with P/Q-type channelopathies, including migraine and epilepsy. Keywords: synapse, homeostatic plasticity, voltage-gated calcium channel, neurotransmitter release, pHluorin, P/Q-type channelopath

    The spillover effects of target interest rate news from the U.S. Fed and the European Central Bank on the Asia-Pacific stock markets

    Get PDF
    This paper provides comprehensive evidence on the spillover effects of the U.S. Fed’s and the European Central Bank (ECB)’s target interest rate news on the market returns and return volatilities of 12 stock markets in the Asia-Pacific over the period 1999–2006. The news spillover effects on the returns are generally consistent with the literature where amajority of stock markets shows significant negative returns in response to unexpected rate rises. While the results of the speed of adjustment for the Fed’s news are mixed across the markets, the ECB news was absorbed slowly, in general. The return volatilities were higher in response to the interest rate news from both sources. In addition, both the Fed and the ECB news elicited tardy or persisting volatility responses. These findings have important implications for all levels of market participants in the Asia-Pacific stock markets.Target interest rate news; Spillover effects; U.S. Fed; ECB

    Quantum chemistry simulation of ground- and excited-state properties of the sulfonium cation on a superconducting quantum processor

    Full text link
    The computational description of correlated electronic structure, and particularly of excited states of many-electron systems, is an anticipated application for quantum devices. An important ramification is to determine the dominant molecular fragmentation pathways in photo-dissociation experiments of light-sensitive compounds, like sulfonium-based photo-acid generators used in photolithography. Here we simulate the static and dynamical electronic structure of the H3_3S+^+ molecule, taken as a minimal model of a triply-bonded sulfur cation, on a superconducting quantum processor of the IBM Falcon architecture. To this end, we combine a qubit reduction technique with variational and diagonalization quantum algorithms, and use a sequence of error-mitigation techniques. We compute dipole structure factors and partial atomic charges along ground- and excited-state potential energy curves, revealing the occurrence of homo- and heterolytic fragmentation. To the best of our knowledge, this is the first simulation of a photo-dissociation reaction on a superconducting quantum device, and an important step towards the computational description of photo-dissociation by quantum computing algorithms.Comment: 12 pages, 7 figure
    corecore