8,017 research outputs found

    Charmonium Suppression by Comover Scattering in Pb+Pb Collisions

    Get PDF
    The first reports of ψ\psi and ψâ€Č\psi' production from experiment NA50 at the CERN SPS are compared to predictions based on a hadronic model of charmonium suppression. Data on centrality dependence and total cross sections are in good accord with these predictions.Comment: 9 pages, latex, 6 figures, epsf, figure added and text modified to clarify result

    Discovering baryon-number violating neutralino decays at the LHC.

    Get PDF
    Recently there has been much interest in the use of single-jet mass and jet substructure to identify boosted particles decaying hadronically at the LHC. We develop these ideas to address the challenging case of a neutralino decaying to three quarks in models with baryonic violation of R parity. These decays have previously been found to be swamped by QCD backgrounds. We demonstrate for the first time that such a decay might be observed directly at the LHC with high significance, by exploiting characteristics of the scales at which its composite jet breaks up into subjets

    Negative Grid Valves and Their Circuits for Decimetre Waves

    Get PDF
    Abstract Not Provided

    Near-optimal protocols in complex nonequilibrium transformations

    Get PDF
    The development of sophisticated experimental means to control nanoscale systems has motivated efforts to design driving protocols which minimize the energy dissipated to the environment. Computational models are a crucial tool in this practical challenge. We describe a general method for sampling an ensemble of finite-time, nonequilibrium protocols biased towards a low average dissipation. We show that this scheme can be carried out very efficiently in several limiting cases. As an application, we sample the ensemble of low-dissipation protocols that invert the magnetization of a 2D Ising model and explore how the diversity of the protocols varies in response to constraints on the average dissipation. In this example, we find that there is a large set of protocols with average dissipation close to the optimal value, which we argue is a general phenomenon.Comment: 6 pages and 3 figures plus 4 pages and 5 figures of supplemental materia

    Measuring thermodynamic length

    Get PDF
    Thermodynamic length is a metric distance between equilibrium thermodynamic states. Among other interesting properties, this metric asymptotically bounds the dissipation induced by a finite time transformation of a thermodynamic system. It is also connected to the Jensen-Shannon divergence, Fisher information and Rao's entropy differential metric. Therefore, thermodynamic length is of central interest in understanding matter out-of-equilibrium. In this paper, we will consider how to define thermodynamic length for a small system described by equilibrium statistical mechanics and how to measure thermodynamic length within a computer simulation. Surprisingly, Bennett's classic acceptance ratio method for measuring free energy differences also measures thermodynamic length.Comment: 4 pages; Typos correcte

    The Renormalized Stress Tensor in Kerr Space-Time: Numerical Results for the Hartle-Hawking Vacuum

    Full text link
    We show that the pathology which afflicts the Hartle-Hawking vacuum on the Kerr black hole space-time can be regarded as due to rigid rotation of the state with the horizon in the sense that when the region outside the speed-of-light surface is removed by introducing a mirror, there is a state with the defining features of the Hartle-Hawking vacuum. In addition, we show that when the field is in this state, the expectation value of the energy-momentum stress tensor measured by an observer close to the horizon and rigidly rotating with it corresponds to that of a thermal distribution at the Hawking temperature rigidly rotating with the horizon.Comment: 17 pages, 7 figure

    Globally controlled universal quantum computation with arbitrary subsystem dimension

    Full text link
    We introduce a scheme to perform universal quantum computation in quantum cellular automata (QCA) fashion in arbitrary subsystem dimension (not necessarily finite). The scheme is developed over a one spatial dimension NN-element array, requiring only mirror symmetric logical encoding and global pulses. A mechanism using ancillary degrees of freedom for subsystem specific measurement is also presented.Comment: 7 pages, 1 figur

    Quantum Operation Time Reversal

    Full text link
    The dynamics of an open quantum system can be described by a quantum operation, a linear, complete positive map of operators. Here, I exhibit a compact expression for the time reversal of a quantum operation, which is closely analogous to the time reversal of a classical Markov transition matrix. Since open quantum dynamics are stochastic, and not, in general, deterministic, the time reversal is not, in general, an inversion of the dynamics. Rather, the system relaxes towards equilibrium in both the forward and reverse time directions. The probability of a quantum trajectory and the conjugate, time reversed trajectory are related by the heat exchanged with the environment.Comment: 4 page

    Molecular Structure of XeF6. II. Internal Motion and Mean Geometry Deduced by Electron Diffraction

    Full text link
    The distribution of internuclear distances in gaseous XeF6 exhibits unusually diffuse XeF6 bonded and F–F geminal nonbonded peaks, the latter of which is severely skewed. The distribution proves the molecule cannot be a regular octahedron vibrating in independent normal modes. The instantaneous molecular configurations encountered by the incident electrons are predominantly in the broad vicinity of C3υC3υ structures conveniently described as distorted octahedra in which the xenon lone pair avoids the bonding pairs. In these distorted structures the XeF bond lengths are distributed over a range of approximately 0.08 Å with the longer bonds tending to be those adjacent to the avoided region of the coordination sphere. Fluorines suffer angular displacements from octahedral sites which range up to 5° or 10° in the vicinity of the avoided region.Alternative interpretations of the diffraction data are developed in detail, ranging from models of statically deformed molecules to those of dynamically inverting molecules. In all cases it is necessary to assume that t1ut1u bending amplitudes are enormous and correlated in a certain way with substantial t2gt2g deformations. Notwith‐standing the small fraction of time that XeF. spends near OhOh symmetry, it is possible to construct a molecular potential‐energy function more or less compatiable with the diffraction data in which the minimum energy occurs at OhOh symmerty. The most notable feature of this model is the almost vanishing restoring force for small t1ut1u bending distortions. Indeed, the mean curvature of the potential surface for this model corresponds to a υ4υ4 force constant F44F44 of 10−2 mdyn/Å or less. Various rapidly inverting non‐OhOh structures embodying particular combinations of t2gt2g and t1ut1u deformations from OhOh symmetry give slightly better radial distribution functions, however. In the region of molecular configuration where the gas molecules spend most of their time, the form of the potential‐energy function required to represent the data does not distinguish between a Jahn–Teller first‐order term or a cubic V445V445 term as the agent responsible for introducing the t2gt2g deformation. The Jahn–Teller term is consistent with Goodman's interpretation of the molecule. On the other hand, the cubic term is found to be exactly analogous to that for other molecules with stereochemically active lone pairs (e.g., SF4, ClF3). Therefore, the question as to why the XeF6 molecule is distorted remains open. The reported absence of any observable gas‐phase paramagnetism weighs against the Jahn–Teller interpretation.The qualitative success but quantitative failure of the valence‐shell–electron‐pair‐repulsion theory is discussed and the relevance of the “pseudo‐Jahn–Teller” formalism of Longuet‐Higgins et al. is pointed out. Brief comparisons are made with isoelectronic ions.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/70641/2/JCPSA6-48-6-2466-1.pd

    Effects of Electron Correlation in X‐Ray and Electron Diffraction. IV. Approximate Treatment for Many‐Electron Atoms

    Full text link
    A simple scheme is proposed for predicting effects of electron correlation on intra‐atomic electron—electron radial distribution functions and on intensities of x rays scattered by gas atoms. It makes use of a relationship connecting the Coulomb hole function for an electron pair with the corresponding correlation energy. The method is applied to the beryllium atom in its ground state. Results compare favorably with results calculated directly from correlated and Hartree—Fock wavefunctions.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/71228/2/JCPSA6-45-12-4700-1.pd
    • 

    corecore