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Measuring thermodynamic length
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Thermodynamic length is a metric distance between equilibrium thermodynamic states. Among
other interesting properties, this metric asymptotically bounds the dissipation induced by a finite
time transformation of a thermodynamic system. It is also connected to the Jensen-Shannon diver-
gence, Fisher information and Rao’s entropy differential metric. Therefore, thermodynamic length
is of central interest in understanding matter out-of-equilibrium. In this paper, we will consider how
to define thermodynamic length for a small system described by equilibrium statistical mechanics
and how to measure thermodynamic length within a computer simulation. Surprisingly, Bennett’s
classic acceptance ratio method for measuring free energy differences also measures thermodynamic
length.

PACS numbers: 05.70.Ln, 05.40.-a

INTRODUCTION

Thermodynamic length is a natural measure of the dis-
tance between equilibrium thermodynamic states [1, 2, 3,
4, 5, 6, 7, 8, 9, 10, 11], which equips the surface of thermo-
dynamic states with a Riemannian metric and defines the
length of a quasi-static transformation as the number of
natural fluctuations along that path. Unlike the entropy
or free energy change, which are state functions, the ther-
modynamic length explicitly depends on the path taken
through thermodynamic state space. Thermodynamic
length is of fundamental interest to the generalization of
thermodynamics to finite time (rather than infinity slow)
transformations. Minimum distance paths are geodesics
on the Riemannian manifold and minimize the dissipa-
tion for slow, but finite time transformations [3, 8]. These
insights have been employed to optimize fractional distil-
lation and other thermodynamic processes [12, 13, 14].

The study of thermodynamic length has largely been
restricted to the field of macroscopic, endoreversible ther-
modynamics. However, there are deep connections be-
tween thermodynamic length, information theory and the
statistical physics of small systems far-from-equilibium.
In this paper we will consider the most appropriate def-
inition of thermodynamic length for small systems and
how to measure this distance in a computer simula-
tion. These considerations reveal a surprising connection
between thermodynamic length, Jensen-Shannon diver-
gence and Bennett’s acceptance ratio method for free en-
ergy calculations [15]. Bennett’s method is an optimal
measure of free energy differences, but it also indirectly
places a lower bound on the thermodynamic length be-
tween neighboring thermodynamic states.

THERMODYNAMIC LENGTH

Consider a physical system, possible microscopically
small, in equilibrium with a large thermal reservoir. The

configurational probability distribution is given by the
Gibbs ensemble, [16]

p(x|λ) =
1

Z
e−βH(x,λ) =

1

Z
e−λi(t)Xi(x) (1)

where x is the configuration, t is time, β = 1/kBT is the
reciprocal temperature (T ) of the environment in natu-
ral units, (kB is the Boltzmann constant), Z is the par-
tition function, and H is the Hamiltonian of the sys-
tem. This total Hamiltonian is split into a collection of
collective variables Xi and conjugate generalized forces
λi, βH = λi(t)Xi(x). We use the Einstein convention
that repeated upper/lower indices are implicitly summed.
The sub-Hamiltonians X are time-independent functions
of the configurations, whereas the conjugate variables λ
are time dependent and configuration independent. Note
that the conjugate variables include a factor of inverse
temperature.

The λ’s are the experimentally controllable parameters
of the system and define the accessible thermodynamic
state space. For example, in the isothermal-isobaric en-
semble we have X = {U, V } and λ = {β, βp}, where U is
the internal energy, V is the volume and p is the external
pressure. Modern experimental techniques have broad-
ened the range of controllable parameters beyond those
considered in standard thermodynamics. For instance,
optical tweezers can apply a constant force to the ends of
a single DNA molecule. The equilibrium description of
this system includes the extension of the polymer, with
the tension as conjugate variable. In computer simula-
tions we have much greater flexibility. The configuration
functions can be rather arbitrary collective variables de-
lineating high dimensional manifolds of equilibrium ther-
modynamic states.

The partition function that normalizes the probability
distribution, Z, is directly related to the free energy F
(Gibbs potential), the free entropy ψ (Massieu potential)
and entropy S:

lnZ = −βF = ψ = S − λi〈Xi〉 (2)
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Angled brackets indicate an average over the appropriate
equilibrium ensemble. The first derivatives of the free
entropy give the first moments of the collective variables,

∂ψ

∂λi
= −〈Xi〉 (3)

and the second derivative yields the covariance matrix,

gij =
∂2ψ

∂λi∂λj
= −

∂〈Xi〉
∂λj

=
〈

(Xi − 〈Xi〉)(Xj − 〈Xj〉)
〉

.

(4)
The covariance matrix gij is positive semi-definite and

varies smoothly from point to point, except at macro-
scopic phase transitions. Therefore, we can use the co-
variance matrix as a metric tensor and naturally equip
the manifold of thermodynamic states with a Rieman-
nian metric. Recall that a metric provides a mea-
sure of ‘distance’ between points. It is a real func-
tion d(a, b) such that (1) distances are non-negative,
d(a, b) ≥ 0 with equality if and only if a = b, (2) sym-
metric, d(a, b) = d(b, a) and (3) it is generally shorter
to go directly from point a to c than to go by way of
b, d(a, b) + d(b, c) ≥ d(a, c) (The triangle inequality).
Moreover, in a Riemannian metric we can measure the
distance along curves connecting different points. The
length of a curve parameterized by t, from 0 to τ , is

L =

∫ τ

0

√

dλi

dt
gij

dλj

dt
dt (5)

and the point-to-point distance is the length of the short-
est curve. Curves of locally minimal distance are called
geodesics, and are the closest analogs of straight lines
in a curved space. Because of the connection to fluctu-
ations [Eq. (4)] the length of curves in thermodynamic
state space are measured by the number of natural fluc-
tuations along the path. The larger the fluctuations the
closer points are together [17, 18].

Originally, Weinhold [1] defined the thermodynamic
length L using the second derivatives of the internal en-
ergy U(S, V, N) with respect to the extensive variables
as a metric tensor, and by Ruppeiner [2] using the cor-
responding derivatives of the entropy, S(U, V, N). Us-
ing intensive variable derivatives of the free energy was
first discussed by Schlögl [5, 10, 11]. For macroscopic
thermodynamic systems these different definitions of the
metric are essentially equivalent [4, 5], analogously to
the macroscopic equivalence of ensembles. However, in
small systems these metrics are in general different and
the Weinhold and Ruppeiner metrics may not exist, since
the second derivatives of the entropy and entropy are not
guaranteed to be positive. The definition adopted in this
paper [Eqs. (4)], essentially that of Schlögl, does not re-
quire the thermodynamic limit.

Moreover, with this definition we can make an impor-
tant connection to statistical estimation theory, since the

thermodynamic metric tensor Eq. (4) is then identical to
the Fisher information matrix [19].

gij(λ) =
∑

x

p(x)
∂ ln p(x)

∂λi

∂ ln p(x)

∂λj
(6)

=
∑

x

p(x)(Xi +
∂ψ

∂λi
)(Xj +

∂ψ

∂λj
)

=
〈

(Xi − 〈Xi〉)(Xj − 〈Xj〉)
〉

According to the Cramér-Rao inequality the variance of
any unbiased estimator is at least as high as the inverse
of the Fisher information [19].

In 1945 Rao introduced the ‘entropy differential met-
ric’, the distance between two distributions arising from
the Riemannian metric over the parameter space with
the Fisher information metric tensor [20, 21]. This en-
tropy differential metric is identical to the thermody-
namic length when, as here, the variables are conjugate
parameters of a Gibbs ensemble [11]. Note that if we
plug the Fisher information metric tensor [Eq. (6)] into
the curve length [Eq. (5)] we can rewrite the entropy dif-
ferential metric as [6, 17]

L =

∫ τ

0

√

√

√

√

∑

x

1

p(x)

[

dp(x)

dt

]2

dt (7)

We should probable consider Rao’s definition as more
general and fundamental than the thermodynamic defini-
tion, just as the statistical definition of entropy is widely
considered more general and fundamental than the origi-
nal thermodynamic definition. In particular, the entropy
differential metric natural extends to the situation where
the Hamiltonian is not a linear function of the control
parameters, or where the system is not in thermal equi-
librium.

We can also define a related quantity, the thermody-
namics divergence of the path,

J = τ

∫ τ

0

dλi

dt
gij

dλj

dt
dt (8)

In Riemannian geometry J /2τ is called the energy, or
action, of the curve, due to similarity with the kinetic
energy integral in classical mechanics. The length and
divergence are related by the inequality,

J ≥ L2 (9)

which can be derived as a consequence of the Cauchy-

Schwarz inequality
∫ τ

0 f2dt
∫ τ

0 g2dt ≥
[∫ τ

0 fg dt
]2

with
g(t) = 1. The value of the divergence depends on the
parametrization. The minimum value L2 is attained only
when the integrand is a constant along the path.

Thermodynamic length and divergence control the dis-
sipation of finite time thermodynamic transformations as
we approach the infinity slow quasi-static limit [3, 6, 8].
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Consider a protocol that perturbs the conjugate vari-
ables of the system from λ1 to λN in a series of discrete
steps [8]. After each step we pause and allow the system
to reequilibrate. After we get to the final thermodynamic
state, we run the protocol in reverse, until we again reach
the initial thermodynamic state.

The total average change in entropy of a single step is
∆Stotal = ∆Ssystem +λi

t+1 [〈Xi〉t+1 − 〈Xi〉t] [6, 8]. Thus,
the hysteresis, the total average dissipation of the com-
bined forward and backwards protocols, is

ω =
N−1
∑

t=1

(

λi
t+1 [〈Xi〉t+1 − 〈Xi〉t] + λi

t [〈Xi〉t − 〈Xi〉t+1]
)

,

=
N−1
∑

t=1

[

λi
t+1 − λi

t

]

[〈Xi〉t+1 − 〈Xi〉t] , (10)

=
N−1
∑

t=1

∆λi∆〈Xi〉 ,

which we can also write as

ω =
τ

N

N−1
∑

t=1

∆λi

δt

∆〈Xi〉
∆λj

∆λj

δt
δt , (11)

where τ = Nδt. In the continuum limit we can replace
the sum by an integral and find that

lim
N→∞

N
N−1
∑

t=1

∆λi∆〈Xi〉 = τ

∫ τ

0

dλi

dt
gij

dλj

dt
dt = J (12)

As the number of steps along a path increases we ap-
proach a reversible, quasi-static process. In this limit,
the hysteresis scales as the thermodynamic divergence
and inversely as the number of steps. (Note that this ex-
pression differs by a factor of 2 from Ref. [8] because here
we have considered the hysteresis, the combined dissipa-
tion of the forward and reversed protocols, rather than
the dissipation along a single direction.) Similar reason-
ing relates the divergence and the hysteresis of a slow,
finite time transformation [3].

The asymptotic hysteresis and thermodynamic diver-
gence of a protocol will depend on the parametrization
of the path. However, thanks to the length-divergence
inequality J ≥ L2 [Eq. (9)] we know that the minimum
thermodynamic divergence of the path is the square of
the thermodynamic length. Repeating the previous anal-
ysis, we find that the thermodynamic length is related to
the cumulative root mean single-step hysteresis.

lim
N→∞

N
N−1
∑

t=1

√

∆λi∆〈Xi〉 = L (13)

Consequently, we can locate optimal, minimal dissipation
paths connecting two thermodynamic states by measur-
ing and optimizing the thermodynamic length.

MEASURING THERMODYNAMIC LENGTH

Thermodynamic length and divergence are clearly of
fundamental interest and importance to non-equilibrium
thermodynamics. Therefore, we shall consider how best
to measure these quantities. The relation between dissi-
pation and divergence [Eqs. (12) and (13)] suggests one
obvious approach. We run equilibrium simulations at
a series of points along the path and examine the scal-
ing of the dissipation with the number of steps. Since
length and divergence are properties of the path taken
through thermodynamic state space, but are indepen-
dent of the underlying dynamics of the system, one can
measure thermodynamic length in a computer simula-
tion using whatever dynamics is most convenient, be it
Metropolis Monte Carlo, Langevin dynamics or deter-
ministically thermostated molecular dynamics. The only
condition is that the chosen dynamics reproduce the cor-
rect equilibrium ensemble, Eq. (1).

Concretely, we must measure ∆〈Xi〉, the mean change
of the collective variables between neighboring thermody-
namic states. Given K uncorrelated measurements from
an equilibrated computer simulation we can estimate this
value as

∆〈Xi〉 =
∑

x

p(x|λ2)Xi(x) −
∑

x

p(x|λ1)Xi(x) (14)

=
∑

x

p(x|λ1)Xi(x)

(

p(x|λ2)

p(x|λ1)
− 1

)

≈
K

∑

k=1

Xi,1,n(exp
(

∆ψ12 − (λj
2 − λj

1)Xj,1,k

)

− 1)

In the second line we rewrite the difference of the means
as the mean difference. (We should not estimate the dif-
ference of the mean directly since this will lead to large
statistical errors that will become larger as the number of
steps increases.) The final line follows from the definition
of the Gibbs ensemble, Eq. (1). Here, Xi,t,k is kth mea-
surement of the ith collective variable, Xi(x) taken from
an equilibrium system defined by the conjugate variables
λt, and ∆ψ12 = ψ2 − ψ1 is the difference in free entropy.

To employ Eq. (14) we need to know the free entropy
change, ∆ψ12, which can be optimally estimated using
Bennett’s acceptance ratio method [15, 22, 23]. Given K
measurements from each of two neighboring states, Xi,1,k

and Xi,2,k the log likelihood ( that the free entropy has
a particular value is [22, 23]

((∆ψ12) =
1

K

K
∑

k=1

ln
1

1 + exp
(

−∆ψ12 + (λi
2 − λi

1)Xi,1,k

)

+
1

K

K
∑

k=1

ln
1

1 + exp
(

−∆ψ21 + (λi
1 − λi

2)Xi,2,k

) (15)

and the Bennett optimal estimate of ∆ψ12 maximizes this
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likelihood. (See [22] for a clear and concise exposition of
this result.)

Rather than using this free entropy measurement to es-
timate the mean change in the collective variables using
Eq. (14), we will instead show that the Bennett likelihood
is directly related to the thermodynamic divergence. If
we insert the Gibbs ensemble [Eq. (1)] into the log like-
lihood, then in the large sample limit, we find that the
likelihood scales as

((∆ψ12) & 2K
(

JS(p1; p2) − ln 2
)

(16)

where JS(p1; p2) is the Jensen-Shannon divergence, the
mean of the relative entropy of each distribution to the
mean distribution [24].

JS(p; q) =
1

2

∑

i

pi ln
pi

1
2 (pi + qi)

+
1

2

∑

i

qi ln
qi

1
2 (pi + qi)

(17)
The minimum divergence is zero for identical distribu-
tions and the maximum is ln 2. The square root of the
Jensen-Shannon divergence is a metric between proba-
bility distributions [25]. However, unlike a Riemannian
metric, the Jensen-Shannon metric space is not an in-
trinsic length space. There may not be a mid point b be-
tween points a and c such that d(a, b) + d(b, c) = d(a, c)
and consequentially we cannot naturally measure path
lengths. However, on any metric space we can define a
new intrinsic metric by measuring the distance along con-
tinuous paths. The Jensen-Shannon divergence between
infinitesimally different distributions is [26]

JS(p; p + dp) =
1

8

∑

i

(dpi)2

pi
. (18)

If we compare with Eq. (7), we can see that in the con-
tinuum limit

L =
√

8

∫

d
√

JS and J = 8

∫

dJS . (19)

The induced Jensen-Shannon metric is proportional to
the thermodynamic (entropy differential) metric, and
the induced Jensen-Shannon divergence is proportional
to the thermodynamic divergence. Consequentially, the
square root of Jensen-Shannon divergence between two
thermodynamic states gives a lower bound on the ther-
modynamic length of any path between those same
states, and the Jensen-Shannon divergence is a lower
bound to the thermodynamic divergence.

To summarize, we can measure the thermodynamic
length and minimum thermodynamic divergence along
a path in thermodynamics state space by adapting Ben-
nett’s method. We perform a series of equilibrium simu-
lations along the path and find the maximum likelihood

free entropy change [Eq. (15)] and Jensen-Shannon di-
vergence [via Eq. (16)] between neighboring ensembles.
The cumulative Jensen-Shannon metric along the path
provides a lower bound to the thermodynamic length
[Eq. (19)] and a lower bound to the minimum divergence
of the path [via Eq. (9)]. This procedure is then repeated
with finer discretizations of the path, until the estimates
of divergence and length converge.
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