3 research outputs found

    Nucleosome-driven transcription factor binding and gene regulation

    No full text
    In fission yeast cells, Cds1 is the effector kinase of the DNA replication checkpoint. We previously showed that when the DNA replication checkpoint is activated, the repressor Yox1 is phosphorylated and inactivated by Cds1, resulting in activation of MluI-binding factor (MBF)-dependent transcription. This is essential to reinitiate DNA synthesis and for correct G1-to-S transition. Here we show that Cdc10, which is an essential part of the MBF core, is the target of the DNA damage checkpoint. When fission yeast cells are treated with DNA-damaging agents, Chk1 is activated and phosphorylates Cdc10 at its carboxy-terminal domain. This modification is responsible for the repression of MBF-dependent transcription through induced release of MBF from chromatin. This inactivation of MBF is important for survival of cells challenged with DNA-damaging agents. Thus Yox1 and Cdc10 couple normal cell cycle regulation in unperturbed conditions and the DNA replication and DNA damage checkpoints into a single transcriptional complex.The experimental work was supported by grants from the Spanish government (BMC 2003-02902 and 2010-15313; CSD2006-00049), the European Union (IP HEROIC), and the Catalan government (AGAUR). L.G. was a recipient of a fellowship from the International PhD program of LaCaixa; G.P.V. was a recipient of a fellowship from the RamĂłn y Cajal program

    Nucleosome-driven transcription factor binding and gene regulation

    No full text
    In fission yeast cells, Cds1 is the effector kinase of the DNA replication checkpoint. We previously showed that when the DNA replication checkpoint is activated, the repressor Yox1 is phosphorylated and inactivated by Cds1, resulting in activation of MluI-binding factor (MBF)-dependent transcription. This is essential to reinitiate DNA synthesis and for correct G1-to-S transition. Here we show that Cdc10, which is an essential part of the MBF core, is the target of the DNA damage checkpoint. When fission yeast cells are treated with DNA-damaging agents, Chk1 is activated and phosphorylates Cdc10 at its carboxy-terminal domain. This modification is responsible for the repression of MBF-dependent transcription through induced release of MBF from chromatin. This inactivation of MBF is important for survival of cells challenged with DNA-damaging agents. Thus Yox1 and Cdc10 couple normal cell cycle regulation in unperturbed conditions and the DNA replication and DNA damage checkpoints into a single transcriptional complex.The experimental work was supported by grants from the Spanish government (BMC 2003-02902 and 2010-15313; CSD2006-00049), the European Union (IP HEROIC), and the Catalan government (AGAUR). L.G. was a recipient of a fellowship from the International PhD program of LaCaixa; G.P.V. was a recipient of a fellowship from the RamĂłn y Cajal program

    Nucleosome-driven transcription factor binding and gene regulation

    No full text
    In fission yeast cells, Cds1 is the effector kinase of the DNA replication checkpoint. We previously showed that when the DNA replication checkpoint is activated, the repressor Yox1 is phosphorylated and inactivated by Cds1, resulting in activation of MluI-binding factor (MBF)-dependent transcription. This is essential to reinitiate DNA synthesis and for correct G1-to-S transition. Here we show that Cdc10, which is an essential part of the MBF core, is the target of the DNA damage checkpoint. When fission yeast cells are treated with DNA-damaging agents, Chk1 is activated and phosphorylates Cdc10 at its carboxy-terminal domain. This modification is responsible for the repression of MBF-dependent transcription through induced release of MBF from chromatin. This inactivation of MBF is important for survival of cells challenged with DNA-damaging agents. Thus Yox1 and Cdc10 couple normal cell cycle regulation in unperturbed conditions and the DNA replication and DNA damage checkpoints into a single transcriptional complex.The experimental work was supported by grants from the Spanish government (BMC 2003-02902 and 2010-15313; CSD2006-00049), the European Union (IP HEROIC), and the Catalan government (AGAUR). L.G. was a recipient of a fellowship from the International PhD program of LaCaixa; G.P.V. was a recipient of a fellowship from the RamĂłn y Cajal program
    corecore