341 research outputs found

    Imaging geometry through dynamics: the observable representation

    Full text link
    For many stochastic processes there is an underlying coordinate space, VV, with the process moving from point to point in VV or on variables (such as spin configurations) defined with respect to VV. There is a matrix of transition probabilities (whether between points in VV or between variables defined on VV) and we focus on its ``slow'' eigenvectors, those with eigenvalues closest to that of the stationary eigenvector. These eigenvectors are the ``observables,'' and they can be used to recover geometrical features of VV

    Theoretical study of the finite temperature spectroscopy in van der Waals clusters. III Solvated Chromophore as an effective diatomics

    Full text link
    The absorption spectroscopy of calcium-doped argon clusters is described in terms of an effective diatomics molecule Ca-(Ar_n), in the framework of semiclassical vertical transitions. We show how, upon choosing a suitable reaction coordinate, the effective finite-temperature equilibrium properties can be obtained for the ground- and excited-surfaces from the potential of mean force (PMF). An extension of the recent multiple range random-walk method is used to calculate the PMF over continuous intervals of distances. The absorption spectra calculated using this single-coordinate description are found to be in good agreement with the spectra obtained from high-statistics Monte Carlo data, in various situations. For CaAr13_{13}, we compare the performances of two different choices of the reaction coordinate. For CaAr_37, the method is seen to be accurate enough to distinguish between different low-energy structures. Finally, the idea of casting the initial many-body problem into a single degree of freedom problem is tested on the spectroscopy of calcium in bulk solid argon.Comment: 8 pages, 9 figure

    Theoretical study of finite temperature spectroscopy in van der Waals clusters. I. Probing phase changes in CaAr_n

    Full text link
    The photoabsorption spectra of calcium-doped argon clusters CaAr_n are investigated at thermal equilibrium using a variety of theoretical and numerical tools. The influence of temperature on the absorption spectra is estimated using the quantum superposition method for a variety of cluster sizes in the range 6<=n<=146. At the harmonic level of approximation, the absorption intensity is calculated through an extension of the Gaussian theory by Wadi and Pollak [J. Chem. Phys. vol 110, 11890 (1999)]. This theory is tested on simple, few-atom systems in both the classical and quantum regimes for which highly accurate Monte Carlo data can be obtained. By incorporating quantum anharmonic corrections to the partition functions and respective weights of the isomers, we show that the superposition method can correctly describe the finite-temperature spectroscopic properties of CaAr_n systems. The use of the absorption spectrum as a possible probe of isomerization or phase changes in the argon cluster is discussed at the light of finite-size effects.Comment: 17 pages, 9 figure

    Theoretical study of finite temperature spectroscopy in van der Waals clusters. II Time-dependent absorption spectra

    Full text link
    Using approximate partition functions and a master equation approach, we investigate the statistical relaxation toward equilibrium in selected CaArn_n clusters. The Gaussian theory of absorption (previous article) is employed to calculate the average photoabsorption intensity associated with the 4s^2-> 4s^14p^1 transition of calcium as a function of time during relaxation. In CaAr_6 and CaAr_10 simple relaxation is observed with a single time scale. CaAr_13 exhibits much slower dynamics and the relaxation occurs over two distinct time scales. CaAr_37 shows much slower relaxation with multiple transients, reminiscent of glassy behavior due to competition between different low-energy structures. We interpret these results in terms of the underlying potential energy surfaces for these clusters.Comment: 10 pages, 9 figure

    Slow relaxation, confinement, and solitons

    Full text link
    Millisecond crystal relaxation has been used to explain anomalous decay in doped alkali halides. We attribute this slowness to Fermi-Pasta-Ulam solitons. Our model exhibits confinement of mechanical energy released by excitation. Extending the model to long times is justified by its relation to solitons, excitations previously proposed to occur in alkali halides. Soliton damping and observation are also discussed

    Metastable states in glassy systems

    Full text link
    Truly stable metastable states are an artifact of the mean-field approximation or the zero temperature limit. If such appealing concepts in glass theory as configurational entropy are to have a meaning beyond these approximations, one needs to cast them in a form involving states with finite lifetimes. Starting from elementary examples and using results of Gaveau and Schulman, we propose a simple expression for the configurational entropy and revisit the question of taking flat averages over metastable states. The construction is applicable to finite dimensional systems, and we explicitly show that for simple mean-field glass models it recovers, justifies and generalises the known results. The calculation emphasises the appearance of new dynamical order parameters.Comment: 4 fig., 20 pages, revtex; added references and minor change

    Metastability and small eigenvalues in Markov chains

    Get PDF
    In this letter we announce rigorous results that elucidate the relation between metastable states and low-lying eigenvalues in Markov chains in a much more general setting and with considerable greater precision as was so far available. This includes a sharp uncertainty principle relating all low-lying eigenvalues to mean times of metastable transitions, a relation between the support of eigenfunctions and the attractor of a metastable state, and sharp estimates on the convergence of probability distribution of the metastable transition times to the exponential distribution.Comment: 5pp, AMSTe

    Dirac and Weyl Equations on a Lattice as Quantum Cellular Automata

    Get PDF
    A discretized time evolution of the wave function for a Dirac particle on a cubic lattice is represented by a very simple quantum cellular automaton. In each evolution step the updated value of the wave function at a given site depends only on the values at the nearest sites, the evolution is unitary and preserves chiral symmetry. Moreover, it is shown that the relationship between Dirac particles and cellular automata operating on two component objects on a lattice is indeed very close. Every local and unitary automaton on a cubic lattice, under some natural assumptions, leads in the continuum limit to the Weyl equation. The sum over histories is evaluated and its connection with path integrals and theories of fermions on a lattice is outlined.Comment: 6, RevTe

    Transition State Spectroscopy of the Photoinduced Ca + CH3F Reaction. 2. Experimental and Ab Initio Studies of the Free Ca***FCH3 Complex

    Get PDF
    International audienceThe Ca* + CH3F CaF* + CH3 reaction was photoinduced in 1:1 Ca***CH3F complexes formed in a supersonic expansion. The transition state of the reaction was explored by monitoring the electronically excited product, CaF, while scanning the laser that turns on the reaction. Moreover, the electronic structure of the Ca***FCH3 system was studied using ab initio methods by associating a pseudopotential description of the [Ca2+] and [F7+] cores, a core polarization operator on calcium, an extensive Gaussian basis and a treatment of the electronic problem at the CCSD(T) (ground state) and RSPT2 (excited states) level. In this contribution we present experimental results for the free complex and a comparison with the results of a previous experiment where the Ca***CH3F complexes are deposited at the surface of large argon clusters. The ab initio calculations allowed an interpretation of the experimental data in terms of two reaction mechanisms, one involving a partial charge transfer state, the other involving the excitation of the C-F stretch in the CH3F moiety prior to charge transfer

    Algebraic Aspects of Abelian Sandpile Models

    Get PDF
    The abelian sandpile models feature a finite abelian group G generated by the operators corresponding to particle addition at various sites. We study the canonical decomposition of G as a product of cyclic groups G = Z_{d_1} X Z_{d_2} X Z_{d_3}...X Z_{d_g}, where g is the least number of generators of G, and d_i is a multiple of d_{i+1}. The structure of G is determined in terms of toppling matrix. We construct scalar functions, linear in height variables of the pile, that are invariant toppling at any site. These invariants provide convenient coordinates to label the recurrent configurations of the sandpile. For an L X L square lattice, we show that g = L. In this case, we observe that the system has nontrivial symmetries coming from the action of the cyclotomic Galois group of the (2L+2)th roots of unity which operates on the set of eigenvalues of the toppling matrix. These eigenvalues are algebraic integers, whose product is the order |G|. With the help of this Galois group, we obtain an explicit factorizaration of |G|. We also use it to define other simpler, though under-complete, sets of toppling invariants.Comment: 39 pages, TIFR/TH/94-3
    • …
    corecore