277 research outputs found

    Present Status of Lattice QCD at nonzero T and \mu

    Get PDF
    I review a few selected topics in Lattice Quantum Chromo Dynamics, focusing more on the recent results. These include i) the equation of state and speed of sound, ii) J/\psi suppression, iii) flavour correlations and iv) the QCD phase diagram in the \mu-T plane.Comment: 13 Pages including figures, Plenary Talk at the 9th Workshop on High Energy Physics Phenomenology, ``WHEPP9'', Bhubaneswar, India, January 3-14, 2006, To appear in Praman

    Screening correlators with chiral Fermions

    Get PDF
    We study screening correlators of quark-antiquark composites at T=2T_c, where T_c is the QCD phase transition temperature, using overlap quarks in the quenched approximation of lattice QCD. As the lattice spacing is changed from 1/4T to a=1/6T and 1/8T, we find that screening correlators change little, in contrast with the situation for other types of lattice fermions. All correlators are close to the ideal gas prediction at small separations. The long distance falloff is clearly exponential, showing that a parametrization by a single screening length is possible at distances z > 1/T. The correlator corresponding to the thermal vector is close to the ideal gas value at all distances, whereas that for the thermal scalar deviates at large distances. This is examined through the screening lengths and momentum space correlators. There is strong evidence that the screening transfer matrix does not have reflection positivity.Comment: 10 pages, 9 fig

    Pressure and non-linear susceptibilities in QCD at finite chemical potentials

    Get PDF
    When the free energy density of QCD is expanded in a series in the chemical potential, mu, the Taylor coefficients are the non-linear quark number susceptibilities. We show that these depend on the prescription for putting chemical potential on the lattice, making all extrapolations in chemical potential prescription dependent at finite lattice spacing. To put bounds on the prescription dependence, we investigate the magnitude of the non-linear susceptibilities over a range of temperature, T, in QCD with two degenerate flavours of light dynamical quarks at lattice spacing 1/4T. The prescription dependence is removed in quenched QCD through a continuum extrapolation, and the dependence of the pressure, P, on mu is obtained.Comment: 15 pages, 2 figures. Data on chi_uuuu added, discussion enhance

    Z2 Monopoles, Vortices, and the Deconfinement Transition in Mixed Action SU(2) Gauge Theory

    Get PDF
    Adding separate chemical potentials lambda and gamma for Z2 monopoles and vortices respectively in the Villain form of the mixed fundamental-adjoint action for the SU(2) lattice gauge theory, we investigate their role in the interplay between the deconfinement and bulk phase transitions using Monte Carlo techniques. Setting lambda to be nonzero, we find that the line of deconfinement transitions is shifted in the coupling plane but it behaves curiously also like the bulk transition line for large enough adjoint coupling, as for lambda=0. In a narrow range of couplings, however, we find separate deconfinement and bulk phase transitions on the same lattice for nonzero and large lambda, suggesting the two to be indeed coincident in the region where a first order deconfinement phase transition is seen. In the limit of large lambda and gamma, we obtain only lines of second order deconfinement phase transitions, as expected from universality.Comment: 18 pages, 10 figures include

    Phase Transitions in SO(3) Lattice Gauge Theory

    Get PDF
    The phase diagram of SO(3) lattice gauge theory is investigated by Monte Carlo techniques on both symmetric and asymmetric lattices with a view (i) to understanding the relationship between the bulk transition and the deconfinement transition, and (ii) to resolving the current ambiguity about the nature of the high temperature phase. A number of tests, including an introduction of a magnetic field and measurement of different correlation functions in the phases with positive and negative values for the adjoint Polyakov line, lead to the conclusion that the two phases correspond to the same physical state. Studies on lattices of different sizes reveal only one phase transition for this theory on all of them and it appears to have a deconfining nature.Comment: Latex 19 pages, 9 figures. Minor changes in introduction and summary sections. The version that appeared in journa

    Anomalies at finite density and chiral fermions

    Get PDF
    Using perturbation theory in the Euclidean (imaginary time) formalism as well as the non-perturbative Fujikawa method, we verify that the chiral anomaly equation remains unaffected in the presence of nonzero chemical potential, ÎĽ\mu. We extend our considerations to fermions with exact chiral symmetry on the lattice and discuss the consequences for the recent Bloch-Wettig proposal for the Dirac operator at finite chemical potential. We propose a new simpler method of incorporating ÎĽ\mu and compare it with the Bloch-Wettig idea.Comment: 12 pages, 3 figures,some typos corrected, a better proof for the \mu independence of anomaly is given in section IIB, v4: the published versio

    Quark-Gluon Plasma: Status of Heavy Ion Physics

    Get PDF
    Lattice quantum chromodynamics (QCD), defined on a discrete space time lattice, leads to a spectacular non-perturbative prediction of a new state of matter, called quark-gluon plasma (QGP), at sufficiently high temperatures or equivalently large energy densities. The experimental programs of CERN, Geneva and BNL, New York of relativistic heavy ion collisions are expected to produce such energy densities, thereby providing us a chance to test the above prediction. After a brief introduction of the necessary theoretical concepts, I will present a critical review of the experimental results already obtained by the various experiments in order to examine whether QGP has already been observed by them.Comment: 11 Pages, LaTeX, Plenary talk given at 6th Workshop in High Energy Physics Phenomenology (WHEPP 6), Chennai (Madras), India, 3-15 Jan 2000 To appear in Pramana, Journal of Physic

    The continuum limit of quark number susceptibilities

    Get PDF
    We report the continuum limit of quark number susceptibilities in quenched QCD. Deviations from ideal gas behaviour at temperature T increase as the lattice spacing is decreased from T/4 to T/6, but a further decrease seems to have very little effect. The measured susceptibilities are 20% lower than the ideal gas values, and also 10% below the hard thermal loop (HTL) results. The off-diagonal susceptibility is several orders of magnitude smaller than the HTL results. We verify a strong correlation between the lowest screening mass and the susceptibility. We also show that the quark number susceptibilities give a reasonable account of the Wroblewski parameter, which measures the strangeness yield in a heavy-ion collision.Comment: 8 pages, 5 figure

    Potts Flux Tube Model at Nonzero Chemical Potential

    Get PDF
    We model the deconfinement phase transition in quantum chromodynamics at nonzero baryon number density and large quark mass by extending the flux tube model (three-state, three-dimensional Potts model) to nonzero chemical potential. In a direct numerical simulation we confirm mean-field-theory predictions that the deconfinement transition does not occur in a baryon-rich environment.Comment: 14 pp RevTeX, 10 Postscript figures, submitted to Phys. Rev D. (Corrected some typographical errors.

    SU(3) Lattice Gauge Theory With Adjoint Action At Nonzero Temperature

    Get PDF
    We study the thermal phase diagram of pure SU(3) gauge theory with fundamental and adjoint couplings. We improve previous estimates of the position of the bulk transition line and determine the thermal deconfinement transition lines for Nt=2,4,6,N_t=2,4,6, and 8. For Nt>4N_t > 4 the deconfinement transition line splits cleanly away from the bulk transition line. With increasing NtN_t the thermal deconfinement transition lines shift to increasingly weaker coupling, joining onto the bulk transition line at increasingly larger βa\beta_a in a pattern consistent with the usual universality picture of lattice gauge theories.Comment: Talk presented by U. M. Heller at Lat94 conference, September 27 - October 1, 1994, Bielefeld, Germany. self unwrapping postscript fil
    • …
    corecore