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Anomalies at finite density and chiral fermions
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Using perturbation theory in the Euclidean (imaginary time) formalism as well as the nonper-
turbative Fujikawa method, we verify that the chiral anomaly equation remains unaffected in the
presence of nonzero chemical potential, µ. We extend our considerations to fermions with exact chi-
ral symmetry on the lattice and discuss the consequences for the recent Bloch-Wettig proposal for
the Dirac operator at finite chemical potential. We propose a new simpler method of incorporating
µ and compare it with the Bloch-Wettig idea.
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I. INTRODUCTION

As we know from Noether’s theorem, invariance of a Lagrangian of a classical field theory under a continuous
symmetry leads to conserved currents. Inclusion of quantum loop corrections can, however, make some currents
anomalous, and thus lead to the breaking of the corresponding symmetry. Chiral anomalies are a well-known example
of this phenomenon. Chiral anomalies arise in a theory of massless fermions interacting with the gauge fields .
The flavorless axial current of the fermions is classically conserved but is violated at one-loop level, as was shown
in the famous calculation of the Adler-Bell-Jackiw(ABJ) triangle diagram for the U(1) case [1, 2]. The anomalous
contribution is a universal feature of the theory and is independent of the ultraviolet regulator used for the quantum
theory. Fujikawa provided a new insight on anomalies by showing that they arise due to the change of the fermion
measure under the corresponding transformation of the fermion fields[3] in the path integral method. Chiral anomalies
have a deeper physical significance, as they relate the exact zero modes of the Dirac operator to the nontrivial
topological sectors of the gauge fields. Consequently, the chiral anomaly in Quantum Chromodynamics(QCD) is
thought to give rise to η′ mass [4]. For the physically interesting case of two massless flavor QCD (Nf = 2), the order
of the chiral phase transition depends [5] on the size of the coefficient of the chiral anomaly term. It is of second
order, with critical exponents of the O(4) spin model, if the anomaly contribution is sizeable at finite temperature.
One could expect a QCD-critical point in the T −µ plane for light quarks in that case. In view of this, it is important
to ascertain what change occurs in the anomaly in the presence of finite temperature and densities.

In this paper we address both the perturbative and nonperturbative aspects of the chiral anomaly at finite
temperature/density. In Sec. I, we compute the triangle anomaly in the imaginary time formalism of thermal field
theory. This method has the advantage that it can be linked to the weak coupling lattice calculations. Lattice QCD
deals with the imaginary time Euclidean propagators, and hence anomaly calculation in the Euclidean space-time
would be directly relevant for numerical studies. In Sec. II, we extend Fujikawa’s analysis to finite density in the
continuum. We show that the anomaly equation arising due to the change in the measure of the functional integrals
under chiral transformation of the fermion fields remains the same at nonzero densities as well. We extend these
considerations in Sec. III to the case of fermions with exact chiral invariance on the lattice. We propose a lattice
Dirac operator with a term linear in the chemical potential µ, i.e., similar to the continuum and also suggest a way
to get rid of the spurious divergences in the thermodynamic quantities. Its potential to handle higher order terms in
the Taylor expansion in chemical potential µ in full QCD is commented upon.
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FIG. 1: The ABJ triangle diagram(left panel) and its crossed counter part(right panel).

II. ANOMALY AT T = 0 AND µ 6= 0 IN CONTINUUM

A. Perturbative calculation

In this section we calculate the expectation value of the gradient of flavor singlet axial vector current of QCD
perturbatively in the presence of finite fermion density to check how the anomaly equation is affected in the presence
of a nonzero chemical potential. The lowest order diagrams are the ABJ triangle diagrams shown in Fig. 1. It is
well-known that the higher order diagrams do not contribute to the anomaly equation at zero density, neither do other
diagrams like the square and pentagon diagrams. We therefore compute only the triangle diagrams at finite density.
Our starting point is the QCD Lagrangian in the Euclidean space with the finite number density term as defined in
[6]. In order to maintain consistency with the lattice literature, we have however chosen the Dirac gamma matrices
to be Hermitian:

L = −ψ̄(6D +m)ψ −
1

2
Tr FαβFαβ + µψ̄γ4ψ , (1)

where 6D = γν(∂ν−igA
a
νTa) with Ta being the generators of the SU(3) gauge group. The ghost terms are not important

in such a calculation as these do not directly couple to the fermions. The γ5 = γ1γ2γ3γ4 is also Hermitian in our case.
The inverse free fermion propagator is seen to acquire a µ dependence and become [i 6p−m+µγ4] . In order to find out
whether the chiral current jµ5 = ψ̄γµγ5ψ for massless quarks is conserved at finite density in one-loop perturbation
theory, we compute the quantum mechanical expectation value of the derivative of the chiral current i.e. ,

〈∂µjµ,5〉 = −
1

2

∫

d4x1d
4x2∂λ〈T {j5,λ(x)jρ(x1)jσ(x2)}〉A

ρ(x1)A
σ(x2) . (2)

where the expectation value of the time ordered product of the three currents at one-loop level is the axialvector-
vector-vector (AVV) triangle diagram shown in Fig. 1. Any deviation of this quantity from its classical value would
give us the anomaly. Using the Euclidean space Feynman rules, the amplitude of the AVV triangle diagram can be
computed. The crossed diagram is the one with the gluon legs exchanged among the two vector (VV) vertices, and
it corresponds to the process which is quantum mechanically equally favored.
Denoting by ∆λρσ(k1, k2) the total amplitude and contracting it with qλ, Eq. (2) can be written in the momentum

space for massless quarks as

qλ∆
λρσ = (−i)g2tr[T aT b]

∫

d4p

(2π)4
Tr

[

γ5
1

6p− 6q − iµγ4
γσ

1

6p− 6k1 − iµγ4
γρ − γ5

1

6p− iµγ4
γσ

1

6p− 6k1 − iµγ4
γρ

+ γ5
1

6p− 6q − iµγ4
γρ

1

6p− 6k2 − iµγ4
γσ − γ5

1

6p− iµγ4
γρ

1

6p− 6k2 − iµγ4
γσ

]

, (3)
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with the tr (Tr ) denoting trace over color (spin) indices. Combining further the first (second) term of the AVV
diagram and the second (first) term of the corresponding crossed diagram respectively, we rewrite the contracted
amplitude in terms of functions f1(p, k1) and f2(p, k2),

qλ∆
λρσ = (−i) tr[T aT b]g2

∫

d4p

(2π)4
[f2(p− k1, k2)− f2(p, k2) + f1(p− k2, k1)− f1(p, k1)] , (4)

where the function f1(p, k1) is defined as,

f1(p, k1) = Tr

[

γ5
6p− iµγ4

(p4 − iµ)2 + ~p2
γσ

6p− 6k1 − iµγ4

(p4 − k14 − iµ)2 + (~p− ~k1)2
γρ

]

= −

[

4ǫασβρpαk1β − 4iµǫ4σβρk1β

((p4 − iµ)2 + ~p2)((p4 − k14 − iµ)2 + (~p− ~k1)2)

]

, since Tr [γ5 6pγσ 6pγρ] = 0. (5)

f2 can be obtained by substituting k2 for k1 and interchanging the indices ρ and σ in Eq. (5). We will use below
a common notation f for denoting either in order to sketch the proof further. Although the numerator of Eq. (5)
has terms up to quadratic order in µ, it should be noted that the µ2 terms are ∼ µ2Tr [γ5γ4γσγ4γρ] ∼ ǫ4σ4ρ and
therefore vanish. In order to further evaluate the right-hand side of Eq. (4), we note that the integrals are linearly
divergent and hence must be regulated by introducing a cut-off scale, Λ. This procedure must be carried out in a
gauge invariant manner such that the vector currents are conserved. In momentum space this amounts to

k1ρ∆
λρσ(k1, k2) = k2σ∆

λρσ(k1, k2) = 0 . (6)

We follow the usual text book [7] method to impose these conditions above and compute the anomaly. In order to
highlight the differences due to the µ 6= 0 terms, we sketch below the evaluation of just the relevant part of Eq. (4).
Expanding the first term and combining it with the second, we rewrite the first two integrals as,

∫

d4p

(2π)4
[f(p− k1, k2)− f(p, k2)] = LtΛ→∞

∫ Λ

0

d4p

(2π)4

[

−k1µ∂µf +
1

2
k1µk1ν∂µ∂νf +O(k3)

]

. (7)

where the derivatives are in the momentum space. The first term of the above integrand can be written as a surface
integral using Gauss law,

LtΛ→∞

∫ Λ

0

d4p

(2π)4
k1µ∂µf(p, k2) = LtΛ→∞

k1µΛµ
Λ

f(Λ, k2)2π
2Λ3

(2π)4

∼ LtΛ→∞

[

4ǫασβρ
Λαk1µk2β

Λ − 4iµ
Λ ǫ4σβρk1µk2β

((1 − i µΛ )
2 + 1)((1− k24+iµ

Λ )2 + (Λ̂−
~k2
Λ )2)

]

ΛµΛ
3

8π2Λ4

= −
ǫαβσρk1αk2β

8π2
(8)

where we uses the isotropy condition, ΛνΛα/Λ
2 = gνα/4. It is clear that the second term of the integrand in Eq. (7)

when similarly integrated leads to the gradient of f(p, k2) at the Fermi surface of radius Λ, and therefore vanishes as
O( 1

Λ). Hence this term, and the higher derivative terms, do not contribute in the limit when the cut-off is taken to
infinity. The other two terms of Eq. (4), as well as the vector current conservation condition Eq. (6), can be similarly
shown to be µ independent, leading to the canonical result even for µ 6= 0 :

qλ∆
λρσ = −tr[T aT b]

ig2

2π2
ǫαβσρk1αk2β . (9)

We have thus shown explicitly that the anomaly equation has no corrections due to nonzero µ or, equivalently, at
nonzero finite density. It is easy to generalize the same computation to nonzero temperatures. At finite temperature,

the temporal part of the momentum gets quantized as the well-known Matsubara frequencies : p4 = (2n+1)π
β

. Corre-

spondingly,
∫∞

−∞
dp4
2π gets replaced by 1

β

∑

n, where n = ±1,±2, ...,±∞. The sum over discrete energy eigenvalues, can

as usual, be split as a zero temperature contribution along with the finite temperature contributions weighted by the
Fermi-Dirac distribution functions for the particles and antiparticles. Note that the finite temperature contributions
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will fall off to zero in the ultraviolet limit because these are regulated by the distribution functions. Thus,

∫

d3~p

(2π)3

[

ki1∂i

[

f(|~p|)

(

1

eβ(|~p|−µ) + 1
+

1

eβ(|~p|+µ) + 1

)]

+ {ρ, k1 ↔ σ, k2}

]

= Lt|~p|→∞
4π|~p|

(2π)3

[

(~k1 · ~p)f(|~p|)

(

1

eβ(|~p|−µ) + 1
+

1

eβ(|~p|+µ) + 1

)

+ {ρ, k1 ↔ σ, k2}

]

−→ 0 (10)

Such perturbative calculations of the ABJ anomaly were reported earlier in the real time formalism at finite tempera-
ture and at both zero [8] and nonzero [9, 10] fermion densities as well as for finite density in Minkowski space-time [11].
We have shown above that these calculations are possible using the imaginary time formalism as well. An imaginary
time calculation is useful as this can be generalized to weak coupling calculations in lattice gauge theory.

B. Nonperturbative calculation

The chiral anomaly in the path integral formalism can also be looked upon as arising due to the change of the
measure under chiral transformation of the fermion fields[3]. In this section, Fujikawa’s method of anomaly calculation
in the path integral formalism, at zero temperature and zero fermion density, is extended to the finite fermion density
case. But before analyzing the finite density problem, the method for µ = 0 is summarized to point out the differences
that would arise in the finite density case. The partition function for massless fermions interacting with SU(N) gauge
theory can be written in Euclidean space as

Z =

∫

Dψ̄Dψ[DAν ]e
−

∫
d4x ψ̄ 6Dψ−SYM =

∫

Dψ̄Dψ[DAν ]e
−S (11)

where SYM = 1/2
∫

d4x
[

Tr Fαβ(x)Fαβ(x) + 1/ξ(faAaµ)
2
]

is the free Yang-Mills action with appropriate gauge fixing
faAaµ = 0. The action for the ghost term is included within the gauge field measure and hence denoted within square
brackets. This is justified since we are interested in the change of the fermion fields under chiral transformations and
the ghost fields do not interact with the fermions. Under the infinitesimal local chiral transformation of the fermion
fields, given by

δψ(x) = iα(x)γ5ψ(x) and δψ̄(x) = iα(x)ψ̄(x)γ5 , (12)

the action changes as S → S− i
∫

d4x α(x)∂νj
ν
5 . The measure changes as a result of the transformation of the fermion

fields. The change of measure is,

Dψ̄
′

Dψ
′

= Dψ̄DψDet|
∂(ψ̄

′

, ψ
′

)

∂(ψ̄, ψ)
| = Dψ̄Dψe−2i

∫
d4x α(x)Trγ5 (13)

where Tr stands for the trace over the spin and the color space. This trace can be computed using the eigenvectors
of the operator 6D, since it is an anti-Hermitian operator. It has purely imaginary eigenvalues and the corresponding
eigenvectors form a complete orthonormal basis. Splitting the trace computation into two parts, the trace over the
nonzero eigenvalues can be done easily as follows. Since {γ5, 6D} = 0, for every eigenvector φm with nonzero eigenvalue
λm 6= 0, there is a corresponding eigenvector γ5φm with eigenvalue −λm. Thus for each finite λm , φ±m = φm ± γ5φm
are eigenvectors of γ5 with eigenvalues ±1. Since trace is independent of the basis vectors we can also compute the
trace of γ5 in the φ±m basis. One obtains zero as the result since there are equal number of φ±m respectively. For the
zero eigenmodes, 6D and γ5 commute hence each zero mode has a definite chirality, leading to a +1 contribution for
those with γ5φn = φn and a -1 for the opposite chirality. Hence the complete evaluation of the trace gets a nonzero
contribution corresponding to the difference between number of the two chiralities:

Trγ5 =
∑

n

φ†nγ5φn = n+ − n−. (14)

Chiral Jacobian in the presence of µ

The presence of finite chemical potential, µ, in the action can be described as an effective change of the Dirac
operator from 6D to 6D − µγ4 = 6D(µ). Under the chiral transformation given in Eq. (12) the action still remains
invariant as in the zero density case. This is due to the fact that the µ dependent term of the action anticommutes
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with γ5: {γ5, µγ4} = 0. Under the transformations given in Eq. (12) the fermion measure changes again by the same
Jacobian factor Trγ5. The corresponding Trγ5 is now evaluated in the space of eigenvectors of the new Dirac operator
6D(µ). This is because the measure is defined by the complete set of states of the Dirac operator which appears in
the action. Although 6D(µ) has both an anti-Hermitian and a Hermitian term, it is still diagonalizable. Consider an
eigenvector φm of 6D(0) with an eigenvalue λm. Let us define two new vectors, ζm and υm as follows:

ζm(x, τ) = eµτφm(x, τ) , υ†m(x, τ) = φ†m(x, τ)e
−µτ . (15)

It is easy to check that ζm is the eigenvector of 6D(µ) with the same (purely imaginary) eigenvalue λm,

6D(µ)ζm = λmζm , (16)

and υ†m is the eigenvector of 6D(µ)† with the eigenvalue λ∗m = −λm,

υ†m 6D†(µ) = −λmυ
†
m. (17)

Note that the sets of eigenvectors {ζ} and {υ} are in one-to-one correspondence with the complete set {φ}. Using
the completeness relation for the latter,

∑

m

∫

φm(x, τ)φ†m(x, τ) d4x = I , (18)

where I denotes the identity matrix, we note that

∑

m

∫

ζm(x, τ)υ†m(x, τ) d4x =
∑

m

∫

φm(x, τ)eµτ e−µτφ†m(x, τ) d
4x = I . (19)

Moreover, {ζ} and {υ} satisfy the following normality condition,

∫

υ†m(x, τ)ζm(x, τ) d4x =

∫

φ†me−µτ eµτφm d4x =

∫

φ†m(x, τ)φm(x, τ) d4x = 1 , (20)

leading to

υ†m(x, τ)γ5ζm(x, τ) = φ†me−µτγ5e
µτφm = φ†m(x, τ)γ5φm(x, τ) , (21)

Using these eigenvector spaces of 6D(µ), the calculation of Trγ5 goes through in the same way as for 6D(0) above. Since
the new operator still anticommutes with γ5 i.e {γ5, 6D(µ)} = 0, for each eigenvector ζm with eigenvalue λm there is
an eigenvector γ5ζm with the eigenvalue −λm. Thus the trace of γ5 is zero for all nonzero λm. In the basis of the
zero modes of 6D(µ), given by ζn and υ†n, the change in the fermion measure is given as,

Trγ5 =
∑

n

υ†nγ5ζn =
∑

n

φ†ne
−µτγ5e

µτφn = n+ − n−. (22)

Thus the change in the fermion measure due to the chiral transformations is the same as in the zero density case with
no additional µ dependent terms. Hence the anomaly is unaffected in the presence of µ. Some remarks on the proof
may be in order. The definition of the vectors ζm and υm in Eq. (15) assumes that neither µ nor τ is infinite. The
same assumption is also utilized in various steps in Eqs. (19)-(22). Clearly at strictly zero temperature, this is not
tenable. However, an infinitesimally small temperature suffices for the proof to go through. Moreover, since the result
is finally µ-independent, we expect the result to be valid at zero temperature, although our proof is valid only in the
limit of zero temperature. The scaling of the eigenvectors, including the chiral zero modes, by the exp(±µτ) factors
can be related to a nonunitary transformation of the fermion fields in the QCD action in the presence of µ, given by

ψ
′

(x, τ) = eµτψ(x, τ) , ψ̄
′

(x, τ) = ψ̄(x, τ)e−µτ , (23)

which makes the action µ-independent:

S =

∫

d4x ψ̄
′

[ 6D − µγ4]ψ
′

=

∫

d4x ψ̄e−µτ [ 6D− µγ4] e
µτψ =

∫

d4x ψ̄ 6D ψ . (24)
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Note that the fields ψ and ψ̄ at the same space-time point scale differently in the transformation in Eq. (23) which
is permissible [12] in the Euclidean field theory since they are mutually independent fields. Let us also emphasize
that the transformation in Eq. (23) is not unitary and thus not physical. Indeed, it merely relates the actions in two
different physical situations of zero and nonzero µ. One clearly cannot employ it in the evaluation of the partition
function due to its nonunitary nature. We have shown above that the transformation suggests how to extend the
cancellation argument for nonzero eigenvalues of the Dirac operator for µ = 0 to the nonzero µ case as well and is thus
useful. Furthermore, since the transformation commutes with both flavor singlet and nonsinglet chiral transformations,
employing it as a prescription to introduce the chemical potential will necessarily lead to a µ dependent action which
has the same chiral invariance as for µ = 0. Whether this way to introduce the chemical potential in any theory is
the only way to do so without affecting its chiral invariance would be interesting to explore; we conjecture that this
is the case.

III. ANOMALY ON THE LATTICE AT FINITE DENSITY

The above discussion of the anomaly in the continuum suggests a way to introduce the chemical potential on the
lattice. By preserving the transformation (23) on the lattice, one may expect to maintain the anomaly to remain µ
independent on the lattice as well. Let us consider the naıve massless fermion action on the lattice,

S = −
∑

x,y

ψ̄x

[

U †
4 (x− 4̂)

γ4
2
δx,y+4̂ − U4(x)

γ4
2
δx,y−4̂ +

3
∑

i=1

(

U †
i (x − î)

γi
2
δx,y+î − Ui(x)

γi
2
δx,y−î

)

]

ψy . (25)

Replacing the ψ and ψ̄ fields in the above action by ψ′ and ψ̄′ respectively, using the lattice analogue of the transfor-
mation (23), we indeed obtain a fermionic action on the lattice at finite density,

S = −
∑

x,y

ψ̄
′

x

[

e−µa4U†
4(x− 4̂)

γ4
2
δx,y+4̂ − eµa4U4(x)

γ4
2
δx,y−4̂ +

3
∑

i=1

(

U†
i (x− î)

γi
2
δx,y+î −Ui(x)

γi
2
δx,y−î

)

]

ψ
′

y . (26)

with a4 being the lattice spacing in the temporal direction. Unfortunately, the infamous fermion doubling problem is
related to the fact that the anomaly on the lattice is canceled exactly for such naıve fermions. The “no-go” theorem
of Nielsen and Ninomiya [13] states that it is impossible to construct lattice Dirac operators which simultaneously
satisfy Hermiticity, and locality and have chiral symmetry while being free of the “doublers”. The commonly used
fermions on the lattice, like the Wilson and the Kogut-Susskind fermions do not have UA(1) chiral symmetry, and so
there is no anomaly to speak of. Nevertheless, we note that a similar transformation for such fermions does lead to
the action popularly used for nonzero chemical potential[14, 15].
Recently, Neuberger [16] constructed a fermion operator Dov, commonly known as the overlap operator, which has

exact chiral symmetry and satisfies the Ginsparg and Wilson[17] relation,

{γ5, Dov} = Dovγ5Dov with Dov = 1 + γ5ǫ(γ5DW ) . (27)

Here ǫ is the sign function and DW is the canonical Wilson-Dirac operator with a parameter M ,

DW (x, y) = (4−M) δx,y −

4
∑

i=1

(

U †
i (x− î)

1 + γi
2

δx,y+î + Ui(x)
1 − γi

2
δx,y−î

)

. (28)

The value of the parameter M is constrained to lie between 0 and 2 for simulating a one flavor quark on the lattice.
The overlap fermion action is invariant under the following chiral transformation, as shown by Luscher [18],

δψ = αγ5(1−
1

2
Dov)ψ and δψ̄ = αψ̄(1−

1

2
Dov)γ5 . (29)

At zero temperature and density, the change in the measure computed on the lattice due to the Luscher transformations
was shown to be related to the index of the fermion operator [18–20] ,

Tr [2γ5(1−
1

2
Dov)] = −Tr (γ5Dov) = n+ − n− = 2 IndexDov , (30)

where n± are right and left handed fermion zero modes respectively.
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Bloch and Wettig [21] proposed a method to incorporate the chemical potential in the overlap operator. It consisted

of i) multiplying U4 [U †
4 ] by exp(µa4)[exp(-µa4)] in the DW in Eq. (28) and ii) extending the definition of the sign

function for the resultant complex matrix. The Dov(µ) also satisfied the Ginsparg-Wilson relation :

{γ5, Dov(µ)} = Dov(µ)γ5Dov(µ). with Dov(µ) = 1 + γ5ǫ(γ5DW (µ)) . (31)

It should be noted that the resultant action does not have the property of eliminating the µ-dependence by any
transformation like Eq. (23) due to the nonlocal nature of Dov.
As we pointed out[22] earlier though, the action S =

∑

x,y ψ̄x[Dov(µ)]xyψy is not invariant under Luscher’s chiral

transformations of Eq. (29). Indeed, its variation is easily seen to be

δS =
aα

2

∑

x,y

ψ̄x
[

2Dov(µ)γ5Dov(µ)−Dov(0)γ5Dov(µ)−Dov(µ)γ5Dov(0)
]

xy
ψy 6= 0 .

The chiral symmetry violation is of the O(a) and hence the symmetry is restored in the continuum limit. One may
alternatively propose modified chiral transformations,

δψ = αγ5(1 −
1

2
Dov(µ))ψ and δψ̄ = αψ̄(1−

1

2
Dov(µ))γ5 , (32)

which will ensure δS = 0. In that case, the anomaly equation −Tr (γ5Dov(µ)) = 2 IndexDov(µ) is valid [21] on
the lattice even in the presence of µ, since the fermion measure changes under these transformations by a Jacobian
factor Tr [2γ5(1 − 1/2Dov(µ))]. Note, however, that the relevant zero modes are now those of the Dov(µ), and thus
µ dependent, in contrast to our continuum result of the previous section.
Furthermore, altering the symmetry transformations as above has undesirable physical consequences, as discussed

in detail in [23]. Let us briefly outline here the main points. Non-Hermiticity of γ5Dov(µ) makes the transformations
nonunitary. The symmetry transformations should not depend on the intensive thermodynamic quantity µ, which is
a tunable parameter of the physical system. The symmetry group itself changes with µ, leaving no physical order
parameter which will characterize the chiral phase transition as a function of µ. In contrast, the chiral symmetry
group remains the same at nonzero temperature (and zero density), allowing us to infer that vanishing of the chiral
condensate would correspond to restoration of the symmetry for the vacuum.

A. A simple proposal

It is well-known that the overlap fermion operator can be obtained [24, 25] from the five dimensional domain wall
fermions in the limit of infinite extent of the fifth dimension. The Bloch-Wettig proposal above was also shown to
arise [26] in this way. It turns out that the chemical potential, µ enters in their action then as the Lagrange multiplier
for the number of fermions on each slice of the fifth dimension. This means that all the unphysical “bulk” modes are
considered with the same weightage in the partition function as the zero modes which eventually correspond to the
massless quarks in four dimensions. The subsequent cancellation of the bulk contributions using Pauli-Villars fields
to single out the contribution of a single chiral fermion thus becomes µ dependent on the lattice. Motivated by this
physical fact, we propose to introduce the chemical potential only to count the fermion confined to the domain wall.
Integrating out the fermions in the fifth dimension, one is led to the following action, which one would have written
down naively to add a number density term :

Dov(µ̂)xy = (Dov)xy −
aµ̂

2a4 M

[

(γ4 + 1)U †
4 (y)δx,y+4̂ − (1 − γ4)U4(x)δx,y−4̂

]

. (33)

Here Dov is the same Neuberger-Dirac operator of Eq. (27), and µ̂ = µa4 is the chemical potential in lattice units.
As usual, the volume of the system is V = N3a3 and the temperature is T = 1/(NTa4) on a N3 × NT lattice with
lattice spacings a and a4 in spatial and temporal directions respectively. The term containing the chemical potential
is not unique. Improved density operators could be used for faster approach to the continuum limit, e.g., addition of
three-link terms. We could have chosen µ̂/s instead of µ̂/M as the multiplying factor for the conserved number part.
All such choices of actions are constrained by the fact that these have the correct continuum limit. However the finite
lattice spacing errors in each of these operators would be different and we comment below on how they may affect
the numerical simulations.
Note that our proposal, too, will break exact chiral invariance at the same O(a) as the Bloch-Wettig proposal. As

a result, the anomaly equation on the lattice will get µ -dependent corrections anyway. A significant difference may
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be the fact that the change in the measure is µ independent for our proposal, as in the case of the continuum. We
persist with it in the following, nevertheless, as it is simpler and easier to implement. Principally, this is due to the
fact that one does not have to compute the sign function of a non-Hermitian matrix, with its inherent ambiguities,
as in the Bloch-Wettig way of incorporating the chemical potential. The non-Hermitian sign function is numerically
also more expensive to simulate for the full interacting case, whenever that becomes more practical.
For noninteracting fermions the Uµ = 1 and the above Neuberger-Dirac operator with the chemical potential term

can be diagonalized in momentum space in terms of the functions,

hj = − sinapj , h4 = −
a

a4
sin(a4p4) ,

h5 = M −
3

∑

j=1

(1− cos apj)−
a

a4
(1 − cos(a4p4)) , s =

√

√

√

√

3
∑

j=1

h2j + h24 + h25 (34)

such that Dov(µ̂) can be written as,

Dov(~p, p4, µ̂) = 1−

4
∑

i=1

iγi
hi
s

−
h5
s

−
aµ̂

a4M
[γ4 cos(a4p4)− i sin(a4p4)] . (35)

To study thermodynamics of fermions one has to necessarily take antiperiodic boundary conditions along the temporal
direction. Assuming periodic boundary conditions along the spatial directions we obtain

apj =
2njπ

N
, nj = 0, .., (N − 1), j = 1, 2, 3 and

ap4 = ωn =
(2n+ 1)π

NT
, n = 0, .., (NT − 1) , (36)

where ωn are the Matsubara frequencies. The operator given by Eq. (35) can be shown to have correct continuum
limit. The number density can be calculated at zero temperature by the contour integral method as was discussed
for the Bloch-Wettig version of the overlap fermions at finite µ in [22]. The major difference one finds is the expected
µ/a2-divergence (µ2/a2-divergence) in the number (energy) density in the continuum limit of a→ 0. What is perhaps
not widely appreciated from such calculations is that the leading term, corresponding to the Stefan-Boltzmann limit,
also changes by a finite computable part. In the next section, we show through numerical evaluations of the sums,
how one can deal with these problems.

B. Numerical Results

We compute two thermodynamic quantities of relevance to the above discussion as well as to the heavy-ion collision
experiments: the change in the energy density due to the chemical potential, ∆ε(µ, T ) = ε(µ, T ) − ε(0, T ) and the
quark number susceptibility at zero chemical potential, χ(0). These thermodynamic quantities are computed by
taking appropriate derivatives of the partition function Z = detDov,

χ(0) =
1

N3a2NT

(

∂2 ln detDov

∂µ̂2

)

a4,µ̂→0,a4=a

, ε(µ̂) = −
1

N3a3NT

(

∂ ln detDov

∂a4

)

µ̂NT , a4=a

(37)

The quantities computed on the lattice are expected to have a Λ2 ∼ 1/a2 dependence on the lattice. In order to
eliminate these spurious Λ2 terms, we follow the same prescription which was used for the energy density computation
at zero temperature (which diverges as Λ4 ). We compute these thermodynamic quantities at zero temperature and
subtract them from the corresponding values computed on the lattice at nonzero temperatures. The zero temperature
values were computed numerically on a lattice with a very large temporal extent NT and fixed a4 such that T =
1/(NTa4) → 0. The Matsubara frequencies then become continuous and hence could be integrated upon numerically.

Fig. 2 displays the subtracted results for ∆ε(µ, T ) for r = µ/T = µ̂NT = 0.5 and χ(0). The former is displayed in
units of T 4 and has the value 0.127 for r = 0.5 in the continuum limit, while the latter is normalized to the ideal gas
value (T 2/3). The M values are as indicated along the symbol used. The subtraction constants had to be computed
separately for energy density and susceptibility. From a comparison of the plots with the corresponding ones [22] for
the Bloch-Wettig case, we find that
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FIG. 2: The energy density(left panel) and quark number susceptibility (right panel)as a function of 1/N2

T for M values as
indicated for ζ = 4.

• there are no leftover effects of divergences after the zero temperature subtraction,

• there are no oscillations for odd-even values of NT ,

• the M-dependence is much less pronounced, and

• the scaling towards the continuum value is linear with the possibility of an easier extrapolation.

We also computed the susceptibility using the Wilson fermions and compared the results with those above. We
found that for NT = 6 the cut-off effects of the Wilson operator are about 21% larger than the M = 1.60 overlap
result shown in the right panel of Fig. (2). The difference reduces to about 3% at NT = 10. Beyond NT = 10,
the approach to the continuum limit is almost identical for both the operators. The Wilson fermions have no chiral
symmetry even for µ = 0, which may make them less favored for the QCD critical point searches which are pivoted
around the µ = 0 transition.
We have also checked that there are no other divergent terms of the form O(a−n) with n > 2 in the number density,

by calculating the fourth-order susceptibility since odd orders of susceptibilities vanish at µ = 0. At zero chemical
potential, the fourth-order susceptibility is given by,

χ(4)(0) =
1

N3NT

(

∂4 ln detDov

∂µ̂4

)

a4,µ̂→0

(38)

A term O(a−4) in the number density will show up as a divergence in this susceptibility, and will need a subtraction
too. From Fig. (3), where we display our results for χ(4)(0) for M = 1.5, we can conclude that there are indeed no
divergences to be seen in the large NT limit. The normalization in this case is also the expected continuum value. It
is not identical to the Stefan-Boltzmann value of 2π−2. Using the contour integral method it can be easily shown to

be χ
(4)
c (0) = 2/π2(1 + 1/4), with the additional factor of 0.25 coming from the term usually cancelled in the usual

prescriptions [14, 15, 27, 28]. We have found the convergence to the continuum value to be strongly M dependent
and unfortunately very slow for all values of M , as seen in the plot B of Fig. (3). Introducing the chemical potential
by choosing µ̂/s as the coefficient of the number density term in Eq. (33), instead of the µ̂/M we used, achieves a
milder M dependence and a faster convergence towards the continuum. Perhaps improving the number density term
can achieve a still faster convergence.

C. A new proposal for QCD critical point via Taylor expansion

Inspired by the above experience of dealing with the number density in the linear form, as in Eq. (33), we make
a proposal valid for all fermions. Because of the infamous sign/phase problem for the fermion determinant with
nonzero chemical potential, it has been proposed to look for the QCD critical point [29] by looking for the radius of
convergence of the Taylor expansion [29, 30] in µ of the baryonic susceptibility. Computations have been done up
to the eighth order so far [29, 31]. Extending these calculations to higher order is both necessary and desirable to
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confirm the results already obtained. Our proposal can permit such an endeavor. We denote M(µ) to be any generic
lattice fermionic operator with the chemical potential µ :

SF =
∑

x,y

Ψ̄(x)M(µ;x, y)Ψ(y)

=
∑

x,y

Ψ̄(x)D(x, y)Ψ(y) + µa
∑

x,y

N(x, y) (39)

Here D can be the staggered, overlap, Wilson-Dirac or any other suitable fermion operator, and N(x, y) is the
corresponding point-split and gauge invariant number density. Eq. (33) provides a concrete example of the above for
the overlap fermions. Note that any improvements in the fermion operator D or the number density N are generically
included as long as the classical continuum limit is the same and µ appears linearly.
It is easy to see that only the first derivative of M with µ is nonzero. All others are zero. Thus denoting by M

′

the first derivative of M with respect to µ and adding more primes in the superscript for successively higher orders,

M ′ =
∑

x,y

N(x, y), and M ′′ =M ′′′ =M ′′′′... = 0 , (40)

for our proposal to incorporate µ in contrast to the popular exp(±µ) prescription where all derivatives are nonzero:

M ′ =M ′′′... =
∑

x,y

N(x, y) and M ′′ =M ′′′′ =M ′′′′′′... 6= 0 . (41)

As a consequence, the various nonlinear susceptibility expressions, or equivalently the expressions for Taylor series
coefficients, are a lot simpler and have a lot fewer terms. For example, let us write down a fourth-order coefficient [by
combining Eqs. (A.4), (A.7), and (A.8) of [29]] :

χ(4) =
T

V

[

〈

O1111 + 6O112 + 4O13 + 3O22 +O4

〉

− 3

〈

O11 +O2

〉2
]

. (42)

Here the notation Oij···l stands for the product, OiOj · · ·Ol. The expressions for On, n=1,4 for our proposal above
are

O1 = Tr M−1M ′, (43)

O2 = −Tr M−1M ′M−1M ′,

O3 = 2 Tr (M−1M ′)3,

O4 = −6 Tr (M−1M ′)4,
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in contrast with those for the usual case given in [29] :

O1 = Tr M−1M ′, (44)

O2 = −Tr M−1M ′M−1M ′ +Tr M−1M ′′,

O3 = 2 Tr (M−1M ′)3 − 3 Tr M−1M ′M−1M ′′ +Tr M−1M ′′′,

O4 = −6 Tr (M−1M ′)4 + 12 Tr (M−1M ′)2M−1M ′′ − 3 Tr (M−1M ′′)2

− 4 Tr M−1M ′M−1M ′′′ +Tr M−1M ′′′′.

The eighth-order term needs O8, which has 18 terms in the usual case whereas it will simply be O8 =
−5040 Tr (M−1M ′)8 for our proposal.
The number of matrix inversions required to compute the higher order susceptibilities is also drastically reduced in

this way of incorporating the chemical potential. This would save a considerable amount of computer time, as matrix
inversions are the most time intensive operations. Following Fig. 3 of Ref. [29], one can see that all computations
referred to on the leftmost branch of the algorithm tree need to be performed when M has a linear µ dependence.
Thus for the eighth-order susceptibility computation we need to compute only eight matrix inversions as compared
to the 20 required there, saving 60% of the computer time. For higher order susceptibilities, the number of matrix
inversions is reduced by at least half, enabling us to compute even higher orders of the Taylor series of thermodynamic
quantities and thus constrain the radius of convergence and the estimated location of the critical point better.
Of course, there is a price to pay, and we hope to demonstrate in the future from our ongoing work that it is not very

big. All the coefficients that one evaluates this way will have the remnants of the terms which are otherwise eliminated
by the usual prescriptions [14, 15, 27, 28]. Based on our computations in the previous section, we suggest that the
zero temperature contribution to each of them be subtracted by evaluating them on a symmetric N4 lattice at the
same β = 6/g2 as the finite temperature computation on the N3 ×NT lattice. Since the second-order susceptibility
χ(2) has a divergence in the continuum limit, its computations may need higher precision to ensure the absence of
the cut-off effects but the higher order coefficients have no such difficulties. One will also have to rescale the fourth-
order susceptibility by a factor of 1.25 in order to use it in the ratio or the root method of estimating the radius of
convergence. We hope that tenth- or even twelfth-order coefficient may thus be computable.

IV. CONCLUSIONS

We have shown perturbatively from the computation of the triangle diagram at zero temperature that the anomaly
equation does not have any finite density correction terms. We have extended our calculations to the nonperturbative
case where we have used Fujikawa’s method to show that the anomaly relation is unaffected in the presence of a
finite chemical potential. This has an important implication for the lattice field theory in designing the lattice Dirac
operator for nonzero µ: It should lead to a µ-independent anomaly relation on the lattice. The recent Bloch-Wettig
proposal for chiral fermion operators at finite density violates the chiral invariance on the lattice itself. While a
µ-dependent modification of the chiral transformation can restore the chiral invariance, it leads to a µ-dependent
anomaly relation unlike in the continuum theory. Such a modification has other physical consequences discussed in
Ref. [23].
We have proposed a physically more justified way of introducing µ in the overlap Dirac operator. In this method the

chiral symmetry is explicitly broken as well, but the contribution to the anomaly relation from the measure is likely to
remain µ independent, with the lattice corrections to the anomaly relation falling off as a power law in the continuum
limit. It has the expected µ2/a2-type divergences in the continuum limit. We showed how a simple subtraction
scheme can take care of them in the free case. We proposed to use the simple linear in µ form for the Taylor series
expansion technique of locating the QCD critical point. It has the advantage that the number of fermion matrix
inversions goes down drastically when computing the higher order quark number susceptibilities. The higher order
susceptibility computations are clearly important to accurately locate the critical point in the T -µB phase space for
QCD. Our proposal would save much of the computational effort required for obtaining higher order susceptibilities,
even for the staggered fermions.
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