57 research outputs found

    Progress in developing a living human tissue-engineered tri-leaflet heart valve assembled from tissue produced by the self-assembly approach

    Get PDF
    The aortic heart valve is constantly subjected to pulsatile flow and pressure gradients which, associated with cardiovascular risk factors and abnormal hemodynamics (i.e. altered wall shear stress), can cause stenosis and calcification of the leaflets and result in valve malfunction and impaired circulation. Avail- able options for valve replacement include homograft, allogenic or xenogenic graft as well as the implan- tation of a mechanical valve. A tissue-engineered heart valve containing living autologous cells would represent an alternative option, particularly for pediatric patients, but still needs to be developed. The present study was designed to demonstrate the feasibility of using a living tissue sheet produced by the self-assembly method, to replace the bovine pericardium currently used for the reconstruction of a stented human heart valve. In this study, human fibroblasts were cultured in the presence of sodium ascorbate to produce tissue sheets. These sheets were superimposed to create a thick construct. Tissue pieces were cut from these constructs and assembled together on a stent, based on techniques used for commercially available replacement valves. Histology and transmission electron microscopy analysis showed that the fibroblasts were embedded in a dense extracellular matrix produced in vitro. The mechanical properties measured were consistent with the fact that the engineered tissue was resistant and could be cut, sutured and assembled on a wire frame typically used in bioprosthetic valve assembly. After a culture period in vitro, the construct was cohesive and did not disrupt or disassemble. The tissue engineered heart valve was stimulated in a pulsatile flow bioreactor and was able to sustain multiple duty cycles. This prototype of a tissue-engineered heart valve containing cells embedded in their own extracellular matrix and sewn on a wire frame has the potential to be strong enough to support physio- logical stress. The next step will be to test this valve extensively in a bioreactor and at a later date, in a large animal model in order to assess in vivo patency of the graft

    In vivo remodeling of fibroblast-derived vascular scaffolds implanted for 6 months in rats

    Get PDF
    There is a clinical need for tissue-engineered small-diameter (<6 mm) vascular grafts since clinical applications are halted by the limited suitability of autologous or synthetic grafts. This study uses the self-assembly approach to produce a fibroblast-derived decellularized vascular scaffold (FDVS) that can be available off-the-shelf. Briefly, extracellular matrix scaffolds were produced using human dermal fibroblasts sheets rolled around a mandrel, maintained in culture to allow for the formation of cohesive and three-dimensional tubular constructs, and decellularized by immersion in deionized water. The FDVSs were implanted as an aortic interpositional graft in six Sprague-Dawley rats for 6 months. Five out of the six implants were still patent 6 months after the surgery. Histological analysis showed the infiltration of cells on both abluminal and luminal sides, and immunofluorescence analysis suggested the formation of neomedia comprised of smooth muscle cells and lined underneath with an endothelium. Furthermore, to verify the feasibility of producing tissue-engineered blood vessels of clinically relevant length and diameter, scaffolds with a 4.6 mm inner diameter and 17 cm in length were fabricated with success and stored for an extended period of time, while maintaining suitable properties following the storage period. This novel demonstration of the potential of the FDVS could accelerate the clinical availability of tissue-engineered blood vessels and warrants further preclinical studies

    Genome-wide patterns of identity-by-descent sharing in the French Canadian founder population

    Get PDF
    In genetics the ability to accurately describe the familial relationships among a group of individuals can be very useful. Recent statistical tools succeeded in assessing the degree of relatedness up to 6–7 generations with good power using dense genome-wide single-nucleotide polymorphism data to estimate the extent of identity-by-descent (IBD) sharing. It is therefore important to describe genome-wide patterns of IBD sharing for more remote and complex relatedness between individuals, such as that observed in a founder population like Quebec, Canada. Taking advantage of the extended genealogical records of the French Canadian founder population, we first compared different tools to identify regions of IBD in order to best describe genome-wide IBD sharing and its correlation with genealogical characteristics. Results showed that the extent of IBD sharing identified with FastIBD correlates best with relatedness measured using genealogical data. Total length of IBD sharing explained 85% of the genealogical kinship’s variance. In addition, we observed significantly higher sharing in pairs of individuals with at least one inbred ancestor compared with those without any. Furthermore, patterns of IBD sharing and average sharing were different across regional populations, consistent with the settlement history of Quebec. Our results suggest that, as expected, the complex relatedness present in founder populations is reflected in patterns of IBD sharing. Using these patterns, it is thus possible to gain insight on the types of distant relationships in a sample from a founder population like Quebec

    GENLIB : an R package for the analysis of genealogical data

    Get PDF
    Background Founder populations have an important role in the study of genetic diseases. Access to detailed genealogical records is often one of their advantages. These genealogical data provide unique information for researchers in evolutionary and population genetics, demography and genetic epidemiology. However, analyzing large genealogical datasets requires specialized methods and software. The GENLIB software was developed to study the large genealogies of the French Canadian population of Quebec, Canada. These genealogies are accessible through the BALSAC database, which contains over 3 million records covering the whole province of Quebec over four centuries. Using this resource, extended pedigrees of up to 17 generations can be constructed from a sample of present-day individuals. Results We have extended and implemented GENLIB as a package in the R environment for statistical computing and graphics, thus allowing optimal flexibility for users. The GENLIB package includes basic functions to manage genealogical data allowing, for example, extraction of a part of a genealogy or selection of specific individuals. There are also many functions providing information to describe the size and complexity of genealogies as well as functions to compute standard measures such as kinship, inbreeding and genetic contribution. GENLIB also includes functions for gene-dropping simulations. The goal of this paper is to present the full functionalities of GENLIB. We used a sample of 140 individuals from the province of Quebec (Canada) to demonstrate GENLIB’s functions. Ascending genealogies for these individuals were reconstructed using BALSAC, yielding a large pedigree of 41,523 individuals. Using GENLIB’s functions, we provide a detailed description of these genealogical data in terms of completeness, genetic contribution of founders, relatedness, inbreeding and the overall complexity of the genealogical tree. We also present gene-dropping simulations based on the whole genealogy to investigate identical-by-descent sharing of alleles and chromosomal segments of different lengths and estimate probabilities of identical-by-descent sharing. Conclusions The R package GENLIB provides a user friendly and flexible environment to analyze extensive genealogical data, allowing an efficient and easy integration of different types of data, analytical methods and additional developments and making this tool ideal for genealogical analysis
    • …
    corecore