5,538 research outputs found

    Quantum properties of a non-Gaussian state in the large-N approximation

    Full text link
    We study the properties of a non-Gaussian density matrix for a O(N) scalar field in the context of the incomplete description picture. This is of relevance for studies of decoherence and entropy production in quantum field theory. In particular, we study how the inclusion of the simplest non-Gaussian correlator in the set of measured observables modifies the effective (Gaussian) description one can infer from the knowledge of the two-point functions only. We compute exactly the matrix elements of the non-Gaussian density matrix at leading order in a 1/N-expansion. This allows us to study the quantum properties (purity, entropy, coherence) of the corresponding state for arbitrarily strong nongaussianity. We find that if the Gaussian and the non-Gaussian observers essentially agree concerning quantum purity or correlation entropy, their conclusion can significantly differ for other, more detailed aspects such as the degree of quantum coherence of the system.Comment: 14 pages, 7 figures. Published version (Phys. Rev. D, minor corrections

    Limits of flexural wave absorption by open lossy resonators: reflection and transmission problems

    Get PDF
    The limits of flexural wave absorption by open lossy resonators are analytically and numerically reported in this work for both the reflection and transmission problems. An experimental validation for the reflection problem is presented. The reflection and transmission of flexural waves in 1D resonant thin beams are analyzed by means of the transfer matrix method. The hypotheses, on which the analytical model relies, are validated by experimental results. The open lossy resonator, consisting of a finite length beam thinner than the main beam, presents both energy leakage due to the aperture of the resonators to the main beam and inherent losses due to the viscoelastic damping. Wave absorption is found to be limited by the balance between the energy leakage and the inherent losses of the open lossy resonator. The perfect compensation of these two elements is known as the critical coupling condition and can be easily tuned by the geometry of the resonator. On the one hand, the scattering in the reflection problem is represented by the reflection coefficient. A single symmetry of the resonance is used to obtain the critical coupling condition. Therefore the perfect absorption can be obtained in this case. On the other hand, the transmission problem is represented by two eigenvalues of the scattering matrix, representing the symmetric and anti-symmetric parts of the full scattering problem. In the geometry analyzed in this work, only one kind of symmetry can be critically coupled, and therefore, the maximal absorption in the transmission problem is limited to 0.5. The results shown in this work pave the way to the design of resonators for efficient flexural wave absorption

    On the Langevin description of nonequilibrium quantum fields

    Full text link
    We consider the non-equilibrium dynamics of a real quantum scalar field. We show the formal equivalence of the exact evolution equations for the statistical and spectral two-point functions with a fictitious Langevin process and examine the conditions under which a local Markovian dynamics is a valid approximation. In quantum field theory, the memory kernel and the noise correlator typically exhibit long time power laws and are thus highly non-local, thereby questioning the possibility of a local description. We show that despite this fact, there is a finite time range during which a local description is accurate. This requires the theory to be (effectively) weakly coupled. We illustrate the use of such a local description for studies of decoherence and entropy production in quantum field theory.Comment: 15 pages, 3 figures, references added, typos corrected. To appear in Phys. Rev.

    (0001) quartz surface imperfections

    Full text link

    MIPS: The Multiband Imaging Photometer for SIRTF

    Get PDF
    The Multiband Imaging Photometer for SIRTF (MIPS) is to be designed to reach as closely as possible the fundamental sensitivity and angular resolution limits for SIRTF over the 3 to 700ÎĽm spectral region. It will use high performance photoconductive detectors from 3 to 200ÎĽm with integrating JFET amplifiers. From 200 to 700ÎĽm, the MIPS will use a bolometer cooled by an adiabatic demagnetization refrigerator. Over much of its operating range, the MIPS will make possible observations at and beyond the conventional Rayleigh diffraction limit of angular resolution

    Test results of Spacelab 2 infrared telescope focal plane

    Get PDF
    The small helium cooled infrared telescope for Spacelab 2 is designed for sensitive mapping of extended, low-surface-brightness celestial sources as well as highly sensitive investigations of the shuttle contamination environment (FPA) for this mission is described as well as the design for a thermally isolated, self-heated J-FET transimpedance amplifier. This amplifier is Johnson noise limited for feedback resistances from less than 10 to the 8th power Omega to greater than 2 x 10 to the 10th power Omega at T = 4.2K. Work on the focal plane array is complete. Performance testing for qualification of the flight hardware is discussed, and results are presented. All infrared data channels are measured to be background limited by the expected level of zodiacal emission

    Three-dimensional Maxwell-Bloch calculation of the temporal profile of a seeded soft x-ray laser pulse

    No full text
    International audienceWe present three-dimensional modeling of amplification of a high-order harmonic seed by a soft x-ray laser plasma. The time-dependent evolution of the x-ray signal is determined from a fully dynamic Maxwell-Bloch calculation. At high seed intensities , a simplified one-dimensional calculation leads to strong Rabi-like temporal oscillations of the output signal. However, such oscillations have not been observed experimentally. Our three-dimensional calculations demonstrate that this is due to spatial non-uniformities in the plasma gain that cause the Rabi oscillations to dampen dramatically. Large amplitude Rabi-like oscillations are expected to appear only in long and uniform plasma. Such targets require optimized guiding techniques
    • …
    corecore