22 research outputs found
Cumulus Cell and Oocyte Gene Expression in Prepubertal Gilts and Sows Identifies Cumulus Cells as a Prime Informative Parameter of Oocyte Quality
Cumulus cells (CCs) are pivotal during oocyte development. This study aimed to identify novel marker genes for porcine oocyte quality by examining the expression of selected genes in CCs and oocytes, employing the model of oocytes from prepubertal animals being of reduced quality compared to those from adult animals. Total RNA was extracted either directly after follicle aspiration or after in vitro maturation, followed by RT-qPCR. Immature gilt CCs accumulated BBOX1 transcripts, involved in L-carnitine biosynthesis, to a 14.8-fold higher level (p < 0.05) relative to sows, while for CPT2, participating in fatty acid oxidation, the level was 0.48 (p < 0.05). While showing no differences between gilt and sow CCs after maturation, CPT2 and BBOX1 levels in oocytes were higher in gilts at both time points. The apparent delayed lipid metabolism and reduced accumulation of ALDOA and G6PD transcripts in gilt CCs after maturation, implying downregulation of glycolysis and the pentose phosphate pathway, suggest gilt cumulus–oocyte complexes have inadequate ATP stores and oxidative stress balance compared to sows at the end of maturation. Reduced expression of BBOX1 and higher expression of CPT2 in CCs before maturation and higher expression of G6PD and ALDOA after maturation are new potential markers of oocyte quality.publishedVersio
Follicular fluid steroid hormones and in vitro embryo development in Duroc and Landrace pigs
publishedVersio
Follicular fluid steroid hormones and in vitro embryo development in Duroc and Landrace pigs
publishedVersio
Effect of two 'progressively motile sperm-oocyte' ratios on porcine in vitro fertilization and embryo development
publishedVersio
Ovarian characteristics and in vitro nuclear and cytoplasmic oocyte maturation in Duroc and Landrace pigs
Differences in total number of piglets born per litter are observed between the Norwegian Duroc (ND) sire and Norwegian Landrace (NL) dam line. The aim of this study was to evaluate ovarian characteristics, and in vitro nuclear and cytoplasmic oocyte maturation in both breeds. One day after weaning, follicular phase ovaries were collected. Ovary length and weight were measured and the number of follicles (< 3 mm and 3–8 mm) was counted. Cumulus-oocyte complexes (COCs) were collected and matured for 48 hr. To assess cumulus expansion, COC area was analysed at 0 and 20 hr. Nuclear maturation and cortical granule (CG) distribution were analysed at 20 and 48 hr, and total glutathione (GSH) was measured at 48 hr to further elucidate cytoplasmic maturation. In first parity sows, a smaller ovary length and fewer 3 to 8 mm follicles were observed in ND compared to NL. For all sows, ND COCs covered a significantly smaller area at 0 hr, but a higher cumulus expansion ratio was observed at 20 hr compared to NL (364 ± 46% versus. 278 ± 27%, p < 0.001). At 20 hr, more ND oocytes exhibited advanced stages of nuclear maturation, while more NL oocytes showed advanced stages of CG distribution. Nuclear maturation to MII stage at 48 hr did not differ between ND and NL oocytes (90.1% and 87.7%, respectively). Moreover, no significant differences were observed for GSH content or CG distribution after maturation. In conclusion, differences with regard to ovarian characteristics as well as to cumulus expansion, and nuclear and cytoplasmic oocyte maturation at 20 hr were observed between the breeds. Further studies are required to determine if this subsequently affects in vitro fertilization and embryo development.publishedVersio
Sperm DNA integrity in Landrace and Duroc boar semen and its relationship to litter size
acceptedVersio
RNA sequencing reveals candidate genes and polymorphisms related to sperm DNA integrity in testis tissue from boars
© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.Background: Sperm DNA is protected against fragmentation by a high degree of chromatin packaging. It has been demonstrated that proper chromatin packaging is important for boar fertility outcome. However, little is known about the molecular mechanisms underlying differences in sperm DNA fragmentation. Knowledge of sequence variation influencing this sperm parameter could be beneficial in selecting the best artificial insemination (AI) boars for commercial production. The aim of this study was to identify genes differentially expressed in testis tissue of Norwegian Landrace and Duroc boars, with high and low sperm DNA fragmentation index (DFI), using transcriptome sequencing.
Results: Altogether, 308 and 374 genes were found to display significant differences in expression level between high and low DFI in Landrace and Duroc boars, respectively. Of these genes, 71 were differentially expressed in both breeds. Gene ontology analysis revealed that significant terms in common for the two breeds included extracellular matrix, extracellular region and calcium ion binding. Moreover, different metabolic processes were enriched in Landrace and Duroc, whereas immune response terms were common in Landrace only. Variant detection identified putative polymorphisms in some of the differentially expressed genes. Validation showed that predicted high impact variants in RAMP2, GIMAP6 and three uncharacterized genes are particularly interesting for sperm DNA fragmentation in boars.
Conclusions: We identified differentially expressed genes between groups of boars with high and low sperm DFI, and functional annotation of these genes point towards important biochemical pathways. Moreover, variant detection identified putative polymorphisms in the differentially expressed genes. Our results provide valuable insights into the molecular network underlying DFI in pigs.publishedVersio
Transcriptome profiling of porcine testistissue reveals genes related to spermhyperactive motility
publishedVersio
Association between single-nucleotide polymorphisms within candidate genes and fertility in Landrace and Duroc pigs
Finding effective predictors of traits related to boar fertility is essential for increasing the efficiency of artificial insemi‑nation systems in pig breeding. The objective of this study was to find associations between single‑nucleotide poly‑morphisms (SNPs) within candidate genes and fertility in the breeds Landrace and Duroc. Animals with breeding val‑ues for total number of piglets born, were re‑sequenced for exonic regions of 14 candidate genes related to male and female fertility using samples from 16 Landrace boars and 16 Duroc boars (four with high and four with low breeding value of total number of piglets born for each breed for male fertility, and the same for female fertility) to detect genetic variants. Genotyping for the detected SNPs was done in 619 Landrace boars and 513 Duroc boars. Two SNPs in BMPR1 and one SNP in COX-2 were found significantly associated with the total number of piglets born in Landrace. In Duroc, two SNPs in PLCz, one SNP in VWF and one SNP in ZP3 were found significantly associated with total number of piglets born. These SNPs explained between 0.27% and 1.18% of the genetic variance. These effects are too low for being used directly for selection purposes but can be of interest in SNP‑panels used for genomic selection.publishedVersio