1,020 research outputs found

    A New Weibull-G Family of Distributions

    Get PDF
    Statistical analysis of lifetime data is an important topic in reliability engineering, biomedical and social sciences and others. We introduce a new generator based on the Weibull random variable called the new Weibull-G family. We study some of its mathematical properties. Its density function can be symmetrical, left-skewed, right-skewed, bathtub and reversed-J shaped, and has increasing, decreasing, bathtub, upside-down bathtub, J, reversed-J and S shaped hazard rates. Some special models are presented. We obtain explicit expressions for the ordinary and incomplete moments, quantile and generating functions, Renyi entropy, order statistics and reliability. Three useful characterizations based on truncated moments are also proposed for the new family. The method of maximum likelihood is used to estimate the model parameters. We illustrate the importance of the family by means of two applications to real data sets

    The Kumaraswamy Marshal-Olkin Family of Distributions

    Get PDF
    We introduce a new family of continuous distributions called the Kumaraswamy Marshal-Olkin generalized family of distributions. We study some mathematical properties of this family. Its density function is symmetrical, left-skewed, right-skewed and reversed-J shaped, and has constant, increasing, decreasing, upside-down bathtub, bathtub and S-shaped hazard rate. We present some special models and investigate the asymptotics and shapes of the family. We derive a power series for the quantile function and obtain explicit expressions for the moments, generating function, mean deviations, two types of entropies and order statistics. Some useful characterizations of the family are also proposed. The method of maximum likelihood is used to estimate the model parameters. We illustrate the importance of the family by means of two applications to real data sets

    Thermodynamic curvature measures interactions

    Full text link
    Thermodynamic fluctuation theory originated with Einstein who inverted the relation S=kBlnΩS=k_B\ln\Omega to express the number of states in terms of entropy: Ω=exp(S/kB)\Omega= \exp(S/k_B). The theory's Gaussian approximation is discussed in most statistical mechanics texts. I review work showing how to go beyond the Gaussian approximation by adding covariance, conservation, and consistency. This generalization leads to a fundamentally new object: the thermodynamic Riemannian curvature scalar RR, a thermodynamic invariant. I argue that R|R| is related to the correlation length and suggest that the sign of RR corresponds to whether the interparticle interactions are effectively attractive or repulsive.Comment: 29 pages, 7 figures (added reference 27

    A New Weibull–Pareto Distribution: Properties and Applications

    Get PDF
    Many distributions have been used as lifetime models. In this article, we propose a new three-parameter Weibull–Pareto distribution, which can produce the most important hazard rate shapes, namely, constant, increasing, decreasing, bathtub, and upsidedown bathtub. Various structural properties of the new distribution are derived including explicit expressions for the moments and incomplete moments, Bonferroni and Lorenz curves, mean deviations, mean residual life, mean waiting time, and generating and quantile functions. The Rényi and q entropies are also derived. We obtain the density function of the order statistics and their moments. The model parameters are estimated by maximum likelihood and the observed information matrix is determined. The usefulness of the new model is illustrated by means of two real datasets on Wheaton river flood and bladder cancer. In the two applications, the new model provides better fits than the Kumaraswamy–Pareto, beta-exponentiated Pareto, beta-Pareto, exponentiated Pareto, and Pareto models

    On Charge-3 Cyclic Monopoles

    Get PDF
    We determine the spectral curve of charge 3 BPS su(2) monopoles with C_3 cyclic symmetry. The symmetry means that the genus 4 spectral curve covers a (Toda) spectral curve of genus 2. A well adapted homology basis is presented enabling the theta functions and monopole data of the genus 4 curve to be given in terms of genus 2 data. The Richelot correspondence, a generalization of the arithmetic mean, is used to solve for this genus 2 curve. Results of other approaches are compared.Comment: 34 pages, 16 figures. Revision: Abstract added and a few small change

    Centimeter-Wave Reflection in the Nitrates and Nitrites of Sodium and Potassium: Experiment and Theory

    Get PDF
    Temperature-dependent centimeter-wave reflection is studied in powdered samples of potassium nitrate (KNO3), potassium nitrite (KNO2), sodium nitrate (NaNO3), and sodium nitrite (NaNO2). Temperature-dependent reflection measurements at centimeter-wave frequencies were performed on an HP8510B Network analyzer based reflectometer. These measurements are compared to calculations utilizing a Debye relaxation model. Reflection losses seen in KNO2 and NaNO2 are expected to be due to the presence of permanent dipoles that are excited to ‘‘hopping’’ modes as the temperature is raised. Although NaNO3 shows little reflection losses, KNO3 shows significant losses as the temperature is raised toward the order/disorder transition temperature of 128 °C. This is believed to be due to the development of ‘‘induced’’ dipole moments as the lattice becomes increasingly disordered

    Random perfect lattices and the sphere packing problem

    Full text link
    Motivated by the search for best lattice sphere packings in Euclidean spaces of large dimensions we study randomly generated perfect lattices in moderately large dimensions (up to d=19 included). Perfect lattices are relevant in the solution of the problem of lattice sphere packing, because the best lattice packing is a perfect lattice and because they can be generated easily by an algorithm. Their number however grows super-exponentially with the dimension so to get an idea of their properties we propose to study a randomized version of the algorithm and to define a random ensemble with an effective temperature in a way reminiscent of a Monte-Carlo simulation. We therefore study the distribution of packing fractions and kissing numbers of these ensembles and show how as the temperature is decreased the best know packers are easily recovered. We find that, even at infinite temperature, the typical perfect lattices are considerably denser than known families (like A_d and D_d) and we propose two hypotheses between which we cannot distinguish in this paper: one in which they improve Minkowsky's bound phi\sim 2^{-(0.84+-0.06) d}, and a competitor, in which their packing fraction decreases super-exponentially, namely phi\sim d^{-a d} but with a very small coefficient a=0.06+-0.04. We also find properties of the random walk which are suggestive of a glassy system already for moderately small dimensions. We also analyze local structure of network of perfect lattices conjecturing that this is a scale-free network in all dimensions with constant scaling exponent 2.6+-0.1.Comment: 19 pages, 22 figure

    Proposal of a population wide genome-based testing for Covid-19

    Get PDF
    Our lives (and deaths) have by now been dominated for two years by COVID-19, a pandemic that has caused hundreds of millions of disease cases, millions of deaths, trillions in economic costs, and major restrictions on our freedom. Here we suggest a novel tool for controlling the COVID-19 pandemic. The key element is a method for a population-scale PCR-based testing, applied on a systematic and repeated basis. For this we have developed a low cost, highly sensitive virus-genome-based test. Using Germany as an example, we demonstrate by using a mathematical model, how useful this strategy could have been in controlling the pandemic. We show using real-world examples how this might be implemented on a mass scale and discuss the feasibility of this approach

    Complete Solving for Explicit Evaluation of Gauss Sums in the Index 2 Case

    Full text link
    Let pp be a prime number, q=pfq=p^f for some positive integer ff, NN be a positive integer such that gcd(N,p)=1\gcd(N,p)=1, and let \k be a primitive multiplicative character of order NN over finite field \fq. This paper studies the problem of explicit evaluation of Gauss sums in "\textsl{index 2 case}" (i.e. f=\f{\p(N)}{2}=[\zn:\pp], where \p(\cd) is Euler function). Firstly, the classification of the Gauss sums in index 2 case is presented. Then, the explicit evaluation of Gauss sums G(\k^\la) (1\laN-1) in index 2 case with order NN being general even integer (i.e. N=2^{r}\cd N_0 where r,N0r,N_0 are positive integers and N03N_03 is odd.) is obtained. Thus, the problem of explicit evaluation of Gauss sums in index 2 case is completely solved
    corecore