12 research outputs found

    Dynamique adaptative et Ă©volution des mutualismes

    No full text
    PARIS-BIUSJ-Thèses (751052125) / SudocPARIS-BIUSJ-Physique recherche (751052113) / SudocSudocFranceF

    Survival thresholds and mortality rates in adaptive dynamics: conciliating deterministic and stochastic simulations

    No full text
    Deterministic population models for adaptive dynamics are derived mathematically from individual-centred stochastic models in the limit of large populations. However, it is common that numerical simulations of both models fit poorly and give rather different behaviours in terms of evolution speeds and branching patterns. Stochastic simulations involve extinction phenomenon operating through demographic stochasticity, when the number of individual 'units' is small. Focusing on the class of integro-differential adaptive models, we include a similar notion in the deterministic formulations, a survival threshold, which allows phenotypical traits in the population to vanish when represented by few 'individuals'. Based on numerical simulations, we show that the survival threshold changes drastically the solution; (i) the evolution speed is much slower, (ii) the branching patterns are reduced continuously and (iii) these patterns are comparable to those obtained with stochastic simulations. The rescaled models can also be analysed theoretically. One can recover the concentration phenomena on well-separated Dirac masses through the constrained Hamilton-Jacobi equation in the limit of small mutations and large observation times

    Does structural sensitivity alter complexity–stability relationships?

    Get PDF
    International audienceStructural sensitivity, namely the sensitivity of a model dynamics to slight changes in its mathematical formulation, has already been studied in some models with a small number of state variables. The aim of this study is to investigate the impact of structural sensitivity in a food web model. Especially, the importance of structural sensitivity is compared to that of trophic complexity (number of species, connectance), which is known to strongly influence food web dynamics. Food web structures are built using the niche model. Then food web dynamics are modeled using several type II functional responses parameterized to fit the same predation fluxes. Food web persistence was found to be mostly determined by trophic complexity. At the opposite, even if food web connectance promotes equilibrium dynamics, their occurrence is mainly driven by the choice of the functional response. These conclusions are robust to changes in some parameter values, the fitting method and some model assumptions. In a one-prey/one-predator system, it was shown that the possibility that multiple stable states coexist can be highly structural sensitive. Quantifying this type of uncertainty at the scale of ecosystem models will be both a natural extension to this work and a challenging issue

    Structural sensitivity and resilience in a predator-prey model with density-dependent mortality

    No full text
    International audienceNumerous formulations with the same mathematical properties can be relevant to model a biological process. Different formulations can predict different model dynamics like equilibrium vs. oscillations even if they are quantitatively close (structural sensitivity). The question we address in this paper is: does the choice of a formulation affect predictions on the number of stable states? We focus on a predator–prey model with predator competition that exhibits multiple stable states. A bifurcation analysis is realized with respect to prey carrying capacity and species body mass ratio within range of values found in food web models. Bifurcation diagrams built for two type-II functional responses are different in two ways. First, the kind of stable state (equilibrium vs. oscillations) is different for 26.0– 49.4% of the parameter values, depending on the parameter space investigated. Using generalized modelling, we highlight the role of functional response slope in this difference. Secondly, the number of stable states is higher with Ivlev’s functional response for 0.1–14.3% of the parameter values. These two changes interact to create differentmodel predictions if a parameter value or a state variable is altered. In these two examples of disturbance, Holling’s disc equation predicts a higher system resilience. Indeed, Ivlev’s functional response predicts that disturbance may trap the system into an alternative stable state that can be escaped from only by a larger alteration (hysteresis phenomena). Two questions arise from this work: (i) how much complex ecological models can be affected by this sensitivity to model formulation? and (ii) how to deal with these uncertainties in model predictions

    Does evolution design robust food webs?

    No full text
    International audienceTheoretical works that use a dynamical approach to study the ability of ecological communities to resist perturbations are largely based on randomly generated ecosystem structures. In contrast, we propose here to asses the robustness of food webs drawn from ecological and evolutionary processes with the use of community evolution models. In a first part, with the use of Adaptive Dynamics theoretical framework, we generate a variety of diversified food webs by solely sampling different richness levels of the environment as a control parameter, and obtain networks that satisfactory compare with empirical data. This allows us to highlight the complex, structuring role of the environmental richness during the evolutionary emergence of food webs. In a second part, we study the short-term ecological responses of food webs to swift changes in their customary environmental richness condition. We reveal a strong link between the environmental conditions that attended food webs evolutionary constructions and their robustness to environmental perturbations. When focusing on emergent properties of our evolved food webs, especially con-nectance, we highlight results that seem to contradict the current paradigm. Among these food webs, the most connected appear to be the less robust to sudden depletion of the environmental richness that constituted their evolutionary environment. Otherwise, we appraise the "adapta-tion" of food webs, by examining how they perform after being suddently immersed in an environment of modified richness level, in comparison with a trophic network that experienced this latter environmental condition all along its evolution

    Density-dependent dispersal and relative dispersal affect the stability of predator-prey metacommunities

    No full text
    International audienceAlthough density-dependent dispersal and relative dispersal (the difference in dispersal rates between species) have been documented in natural systems, their effects on the stability of metacommunities are poorly understood. Here we investigate the effects of intra- and interspecific density-dependent dispersal on the regional stability in a predator-prey metacommunity model. We show that, when the dynamics of the populations reach equilibrium, the stability of the metacommunity is not affected by density-dependent dispersal. However, the regional stability, measured as the regional variability or the persistence, can be modified by density-dependent dispersal when local populations fluctuate over time. Moreover these effects depend on the relative dispersal of the predator and the prey. Regional stability is modified through changes in spatial synchrony. Interspecific density-dependent dispersal always desynchronises local dynamics, whereas intraspecific density-dependent dispersal may either synchronise or desynchronise it depending on dispersal rates. Moreover, intra- and interspecific density-dependent dispersal strengthen the top-down control of the prey by the predator at intermediate dispersal rates. As a consequence the regional stability of the metacommunity is increased at intermediate dispersal rates. Our results show that density-dependent dispersal and relative dispersal of species are keys to understanding the response of ecosystems to fragmentation

    Scaling up the predator functional response in heterogeneous environment: When Holling type III can emerge?

    No full text
    Accurate parametrization of functional terms in model equations is of great importance for reproducing the dynamics of real food webs. Constructing models over large spatial and temporal scales using mathematical expressions obtained based on microcosm experiments can be erroneous. Here, using a generic spatial predator-prey model, we show that scaling up the microscale functional response of a predator can result in qualitative alterations of functional response on macroscales. In particular, a global functional response of sigmoid type (Holling type III) can emerge as a result of non-linear averaging of non-sigmoid local responses (Holling type I or II). We demonstrate that alteration between the local and the global response in the model is a result of the interplay between density-dependent dispersal of the predator across the habitat and heterogeneity of the environment. Using the method of aggregation of variables, we analytically derive the mathematical formulation of the global functional response as a function of the total amount of prey in the system, and reveal the key parameters which control the emergence of a Holling type III global response. We argue that this mechanism by which a global Holling type III emerges from a local Holling type II response has not been reported in the literature yet: in particular, Holling type III can emerge in the case of a fixed gradient of resource distribution across the habitat, which would be impossible in priorly suggested mechanisms. As a case study, we consider the interaction between phytoplankton and zooplankton grazers in the water column; and we show that the emergence of a Holling type III global response can allow for the efficient top-down regulation of primary producers and stabilization of planktonic ecosystems under eutrophic conditions

    Three-Dimensional Bifurcation Analysis of a Predator-Prey Model with Uncertain Formulation

    No full text
    International audienc
    corecore