452 research outputs found

    Plasma contactors for use with electodynamic tethers for power generation

    Get PDF
    Plasma contactors are proposed as a means of making good electrical contact between biased surfaces such as found at the ends of an electrodynamic tether and the space environment. The plasma contactor emits a plasma cloud which facilitates the electrical connection. The physics of this plasma cloud is investigated for contactors used as electron collectors. The central question addressed is whether the electrons collected by a plasma contactor come from the far field or by ionization of local neutral gas. This question is important because the system implications are different for the two mechanisms. It is shown that contactor clouds in space will consist of a spherical core possibly containing a shock wave. Outside of the core the cloud will expand anisotropically across the magnetic field leading to a turbulent cigar shape structure along the field. This outer region is itself divided into two regions by the ion response to the electric field. A two-dimensional theory for the outer regions of the cloud is developed. The current voltage characteristic of an Argon plasma contactor cloud is estimated for several ion currents in the range of 1 to 100 Amperes. It is suggested that the major source of collected electrons comes by ionization of neutral gas while collection of electrons from the far field is relatively small

    Etching of random solids: hardening dynamics and self-organized fractality

    Full text link
    When a finite volume of an etching solution comes in contact with a disordered solid, a complex dynamics of the solid-solution interface develops. Since only the weak parts are corroded, the solid surface hardens progressively. If the etchant is consumed in the chemical reaction, the corrosion dynamics slows down and stops spontaneously leaving a fractal solid surface, which reveals the latent percolation criticality hidden in any random system. Here we introduce and study, both analytically and numerically, a simple model for this phenomenon. In this way we obtain a detailed description of the process in terms of percolation theory. In particular we explain the mechanism of hardening of the surface and connect it to Gradient Percolation.Comment: Latex, aipproc, 6 pages, 3 figures, Proceedings of 6th Granada Seminar on Computational Physic

    Electrodynamics of the plasma environment induced around spacecraft in low earth orbit : three-dimensional theory and numerical modeling

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 1991.Includes bibliographical references (leaves 226-236).by Nikolaos Achilleas Gatsonis.Ph.D

    Resonant electron transmission through a finite quantum spin chain

    Full text link
    Electron transport in a finite one dimensional quantum spin chain (with ferromagnetic exchange) is studied within an s−ds-d exchange Hamiltonian. Spin transfer coefficients strongly depend on the sign of the s−ds-d exchange constant. For a ferromagnetic coupling, they exhibit a novel resonant pattern, reflecting the salient features of the combined electron-spin system. Spin-flip processes are inelastic and feasible at finite voltage or at finite temperature.Comment: 4 pages including 4 .eps figure

    Modeling of Macroscopic/Microscopic Transport and Growth Phenomena in Zeolite Crystal Solutions Under Microgravity Conditions

    Get PDF
    Crystals grown from liquid solutions have important industrial applications. Zeolites, for instance, a class of crystalline aluminosilicate materials, form the backbone of the chemical process industry worldwide, as they are used as adsorbents and catalysts. Many of the phenomena associated with crystal growth processes are not well understood due to complex microscopic and macroscopic interactions. Microgravity could help elucidate these phenomena and allow the control of defect locations, concentration, as well as size of crystals. Microgravity in an orbiting spacecraft could help isolate the possible effects of natural convection (which affects defect formation) and minimize sedimentation. In addition, crystals will stay essentially suspended in the nutrient pool under a diffusion-limited growth condition. This is expected to promote larger crystals by allowing a longer residence time in a high-concentration nutrient field. Among other factors, the crystal size distribution depends on the nucleation rate and crystallization. These two are also related to the "gel" polymerization/depolymerization rate. Macroscopic bulk mass and flow transport and especially gravity, force the crystals down to the bottom of the reactor, thus forming a sedimentation layer. In this layer, the growth rate of the crystals slows down as crystals compete for a limited amount of nutrients. The macroscopic transport phenomena under certain conditions can, however, enhance the nutrient supply and therefore, accelerate crystal growth. Several zeolite experiments have been performed in space with mixed results. The results from our laboratory have indicated an enhancement in size of 30 to 70 percent compared to the best ground based controls, and a reduction of lattice defects in many of the space grown crystals. Such experiments are difficult to interpret, and cannot be easily used to derive empirical or other laws since many physical parameters are simultaneously involved in the process. At the same time, however, there is increased urgency to develop such an understanding in order to more accurately quantify the process. In order to better understand the results obtained from our prior space experiments, and design future experiments, a detailed fluid dynamic model simulating the crystal growth mechanism is required. This will not only add to the fundamental knowledge on the crystallization of zeolites, but also be useful in predicting the limits of size and growth of these important industrial materials. Our objective is to develop macro/microscopic theoretical and computational models to study the effect of transport phenomena in the growth of crystals grown in solutions. Our effort has concentrated so far in the development of separate macroscopic and microscopic models. The major highlights of our accomplishments are described

    Pulsed Plasma Thruster Contamination

    Get PDF
    Pulsed Plasma Thrusters (PPT's) are currently baselined for the Air Force Mightysat II.1 flight in 1999 and are under consideration for a number of other missions for primary propulsion, precision positioning, and attitude control functions. In this work, PPT plumes were characterized to assess their contamination characteristics. Diagnostics included planar and cylindrical Langmuir probes and a large number of collimated quartz contamination sensors. Measurements were made using a LES 8/9 flight PPT at 0.24, 0.39, 0.55, and 1.2 m from the thruster, as well as in the backflow region behind the thruster. Plasma measurements revealed a peak centerline ion density and velocity of approx. 6 x 10(exp 12) cm(exp -3) and 42,000 m/s, respectively. Optical transmittance measurements of the quartz sensors after 2 x 10(exp 5) pulses showed a rapid decrease in plume contamination with increasing angle from the plume axis, with a barely measurable transmittance decrease in the ultraviolet at 90 deg. No change in optical properties was detected for sensors in the backflow region

    STARD for Abstracts: Essential items for reporting diagnostic accuracy studies in journal or conference abstracts

    Get PDF
    Many abstracts of diagnostic accuracy studies are currently insufficiently informative. We extended the STARD (Standards for Reporting Diagnostic Accuracy) statement by developing a list of essential items that authors should consider when reporting diagnostic accuracy studies in journal or conference abstracts. After a literature review of published guidance for reporting biomedical studies, we identified 39 items potentially relevant to report in an abstract. We then selected essential items through a two round web based survey among the 85 members of the STARD Group, followed by discussions within an executive committee. Seventy three STARD Group members responded (86%), with 100% completion rate. STARD for Abstracts is a list of 11 quintessential items, to be reported in every abstract of a diagnostic accuracy study. We provide examples of complete reporting, and developed template text for writing informative abstract

    Coronary computed tomography angiography compared with single photon emission computed tomography myocardial perfusion imaging as a guide to optimal medical therapy in patients presenting with stable angina: The RESCUE trial

    Get PDF
    Background The RESCUE (Randomized Evaluation of Patients with Stable Angina Comparing Utilization of Noninvasive Examinations) trial was a randomized, controlled, multicenter, comparative efficacy outcomes trial designed to assess whether initial testing with coronary computed tomographic angiography (CCTA) is noninferior to single photon emission computed tomography (SPECT) myocardial perfusion imaging in directing patients with stable angina to optimal medical therapy alone or optimal medical therapy with revascularization. Methods and Results The end point was first major adverse cardiovascular event (MACE) (cardiac death or myocardial infarction), or revascularization. Noninferiority margin for CCTA was set a priori as a hazard ratio (HR) of 1.3 (95% CI=0, 1.605). One thousand fifty participants from 44 sites were randomized to CCTA (n=518) or SPECT (n=532). Mean follow-up time was 16.2 (SD 7.9) months. There were no cardiac-related deaths. In patients with a negative CCTA there was 1 acute myocardial infarction; in patients with a negative SPECT examination there were 2 acute myocardial infarctions; and for positive CCTA and SPECT, 1 acute myocardial infarction each. Participants in the CCTA arm had a similar rate of MACE or revascularization compared with those in the SPECT myocardial perfusion imaging arm, (HR, 1.03; 95% CI=0.61-1.75)

    RE: Advanced Breast Cancer Definitions by Staging System Examined in the Breast Cancer Surveillance Consortium

    Get PDF
    As investigators for ECOG-ACRIN’s Tomosynthesis Mammographic Imaging Screening Trial (TMIST) trial, we are writing to draw attention to conceptual issues in the outcome definitions and study population in Kerlikowske et al. (1), which limit inferences with respect to the TMIST trial
    • …
    corecore