61 research outputs found

    Analyse de satisfaction et des performances visuelles après la correction de la presbytie par implant intracornéen Kamra

    Get PDF
    Évaluer la satisfaction, l'efficacité et la tolérance de l'implant intraoculaire Kamra® (ACI 7000PDT) implanté, en monoculaire, chez des patients presbytes, emmétropes ou amétropes, pour améliorer la vision de près. MATÉRIELS ET MÉTHODES: Cette étude, monocentrique, non randomisée, non comparative chez 18 patients amétropes opérés de LASIK (analyse rétrospective) et 11 patients emmétropes (groupe POCKET, analyse prospective). L'implant était implanté sur l'ceil non dominant, centré sur le vertex, après découpe intrastromale au laser femtoseconde. Nous avons évalué l'acuité visuelle non corrigée (AVNC), corrigée, monoculaire (oeil implanté) et binoculaire, en vision de près (VP), intermédiaire (VI) et de loin (VL) en échelle logMAR (et Monoyer). Nous avons également étudié l'équivalent sphérique (ES), les complications postopératoires et la satisfaction des patients. RÉSULTATS: le groupe LASIK présentait un suivi moyen de 11,2 +- 3,4 mois (min=6 ; max= 24) et un ES moyen préopératoire de 0,38 +- 1,86 (-6,5 ; +1,625). À 1 an 81,8% ont une AVNC binoculaire >= 7/10e et 0,05). À 6 mois 64% des patients ont une AVNC à la fois de loin >=7/10e et de près <= P2. Aucune complication importante n'a été constatée. Un shift hypermétropique moyen de +0,75D était retrouvé à 6 mois, secondaire à un aplatissement cornéen central. 72,7% des patients étaient satisfaits du résultat à 3 mois, 81,8% le sont pour la VP avec un bon éclairage, 100% pour les VL et VI. 36% se plaignaient de vision floue et de sécheresse. CONCLUSION/DISCUSSION: L'implant Kamra® semble être un traitement alternatif sûr et efficace pour la correction de la presbytie chez les patients emmétropes presbytes après un suivi d'1 an.ROUEN-BU Médecine-Pharmacie (765402102) / SudocSudocFranceF

    Medium to long term follow up study of the efficacy of cessation of eye-rubbing to halt progression of keratoconus

    Get PDF
    PurposeTo study the progression of keratoconus after cessation of eye rubbing with a minimum follow up of three-years.DesignRetrospective, monocentric, longitudinal cohort study of keratoconus patients with a minimum of 3 years follow-up.ParticipantsOne hundred fifty three eyes of seventy-seven consecutive patients with keratoconus were included.MethodsInitial examination consisted of anterior and posterior segment evaluation using slit-lamp biomicroscopy. At the initial visit, patients were thoroughly informed of their pathology and instructed to stop rubbing their eyes. Eye rubbing cessation was assessed at all the follow-up visits at 6 months, 1 year, 2 years, 3 years, and yearly afterward. Corneal topography using the Pentacam® (Oculus®, Wetzlar, Germany) was used to obtain maximum and average anterior keratometry readings (Kmax and Kmean), as well as thinnest pachymetry (Pachymin, μm) in both eyes.Main outcome measuresThe main outcomes measured were maximum keratometry (Kmax), mean keratometry (Kmean), and thinnest pachymetry (Pachymin) values at various time points to assess for keratoconus progression. Keratoconus progression was defined as a significant augmentation of Kmax (&gt;1D), Kmean (&gt;1D), or significant diminution of Pachymin (&gt;5%) throughout the total follow-up duration.ResultsOne hundred fifty three eyes of seventy-seven patients (75.3% males) aged 26.4 years old, were followed for an average of 53 months. Over the course of the follow-up, there was no statistically significant variation of ∆Kmax (+0.04 ± 0.87; p = 0.34), ∆ Kmean (+0.30 ± 0.67; p = 0.27) nor ∆Pachymin (−4.36 ± 11.88; p = 0.64). Among the 26 of the 153 eyes which had at least one criterion of KC progression, 25 admitted continuing eye rubbing, or other at-risk behaviors.ConclusionThis study suggests that a significant proportion of keratoconus patients are likely to remain stable if close monitoring and strict ARB cessation are achieved, without the need for further intervention

    Diffuse laser illumination for Maxwellian view Doppler holography of the retina

    Full text link
    We describe the advantages of diffuse illumination in laser holography for ophthalmology. The presence of a diffusing element introduces an angular diversity of the optical radiation and reduces its spatial coherence, which spreads out the energy distribution of the illumination beam in the focal plane of the eyepiece. The field of view of digitally computed retinal images can easily be increased as the eyepiece can be moved closer to the cornea to obtain a Maxwellian view of the retina without compromising ocular safety. Compliance with American and European safety standards for ophthalmic devices is more easily obtained by preventing the presence of a laser hot spot observed in front of the cornea in the absence of a scattering element. Diffuse laser illumination does not introduce any adverse effects on digitally computed laser Doppler images.Comment: 9 page

    Une nouvelle méthode de décomposition polynomiale d’un front d’onde oculaire

    No full text
    The eye vision defaults are analyzed and classified by studyingthe corresponding eye wavefront. After presenting the orthogonal basis, called the Zernike basis, that is currently used for the medical diagnosis, a new decomposition basis is built. It is based on the use of the space of polynomials of valuation greater or equal to L+1 (for L a natural integer). It allows to uniquely decompose a polynomial wavefront into the sum of a polynomial of low degree (lesser or equal to L) and a polynomial of high valuation (greater or equal to L +1). By choosing L = 2, a new decomposition, called D2V3, is obtained where the polynomial wavefront of high degree does not include terms of radial degree lesser or equal to 2. In particular, it allows to quantify perfectly the aberrations that can be corrected by eyeglasses or not. Various clinical examples clearly show the interest of this new basis compared to a diagnosis based on the Zernike decomposition.Les défaut de la vision sont analysés et classés à partir des caractéristiques mathématiques du front d’onde de l’oeil considéré. Après avoir présenté la méthode actuelle basée sur la décomposition du front d’onde dans la base orthonormale de Zernike ainsi que certaines de ses limitations, on propose ici une nouvelle base de décomposition. Celle-ci repose sur l’utilisation del’espace des fronts d’onde polynomiaux de valuation supérieure ou égale à L + 1 (où L est un entier naturel) et permet de décomposer de manière unique un front d’onde polynomial en la somme d’un front d’onde polynomial de bas degré (inférieur ou égal à L) et un front d’onde polynomial de haute valuation (supérieure ou égal à L + 1). En choisissant L = 2, une nouvelle décomposition est obtenue, appelée D2V3, où le front d’onde polynomial de haut degré ne comporte pas de termes de degré radial inférieur ou égal à deux. Cette approche permet de dissocier parfaitement les aberrations optiques corrigibles ou non par le port de lunettes. Différents cas cliniques présentés dans la dernière section permettent de mettre en évidence l’intérêt de cette nouvelle base de décomposition

    A new polynomial decomposition method for ocular wavefront

    No full text
    Les défaut de la vision sont analysés et classés à partir des caractéristiques mathématiques du front d’onde de l’oeil considéré. Après avoir présenté la méthode actuelle basée sur la décomposition du front d’onde dans la base orthonormale de Zernike ainsi que certaines de ses limitations, on propose ici une nouvelle base de décomposition. Celle-ci repose sur l’utilisation del’espace des fronts d’onde polynomiaux de valuation supérieure ou égale à L + 1 (où L est un entier naturel) et permet de décomposer de manière unique un front d’onde polynomial en la somme d’un front d’onde polynomial de bas degré (inférieur ou égal à L) et un front d’onde polynomial de haute valuation (supérieure ou égal à L + 1). En choisissant L = 2, une nouvelle décomposition est obtenue, appelée D2V3, où le front d’onde polynomial de haut degré ne comporte pas de termes de degré radial inférieur ou égal à deux. Cette approche permet de dissocier parfaitement les aberrations optiques corrigibles ou non par le port de lunettes. Différents cas cliniques présentés dans la dernière section permettent de mettre en évidence l’intérêt de cette nouvelle base de décomposition.The eye vision defaults are analyzed and classified by studyingthe corresponding eye wavefront. After presenting the orthogonal basis, called the Zernike basis, that is currently used for the medical diagnosis, a new decomposition basis is built. It is based on the use of the space of polynomials of valuation greater or equal to L+1 (for L a natural integer). It allows to uniquely decompose a polynomial wavefront into the sum of a polynomial of low degree (lesser or equal to L) and a polynomial of high valuation (greater or equal to L +1). By choosing L = 2, a new decomposition, called D2V3, is obtained where the polynomial wavefront of high degree does not include terms of radial degree lesser or equal to 2. In particular, it allows to quantify perfectly the aberrations that can be corrected by eyeglasses or not. Various clinical examples clearly show the interest of this new basis compared to a diagnosis based on the Zernike decomposition

    Refractive and diffractive contribution of linear chromatic aberration (LCA) on depth-of-focus with trifocal intraocular lenses (IOLs)

    Full text link
    Purpose: To investigate the refractive and diffractive contribution of LCA on depth of focus extension of trifocal IOLs in polychromatic light conditions Setting: University of Liège, Belgium; Fondation Ophtalmologique A. de Rothschild, Paris Methods: The LCAs associated with the three focal points of hydrophobic and hydrophilic diffractive FineVision trifocal IOLs (PhysIOL SA, Liège, Belgium), were simulated in an Arizona eye model and experimentally measured on an optical bench at 480, 546 and 650 nm. The effect of Abbe number and aperture on different IOL materials was also evaluated. Based on wavelength–dependent MTF through-focus curves and PSF properties, polychromatic behavior of the trifocal IOLs was assessed under mesopic and photopic conditions. Results: LCA amplitude and sign were different for each of the trifocal IOL focal points. The diffractive LCA for near and intermediate was independent of IOL material (GFree versus hydrophilic acrylic, 26%), while far vision LCA appeared to be controlled by the material Abbe number. Under polychromatic conditions, the LCA contributed to depth of focus extension with different types of lens material, providing maximal visual acuity under white light conditions at all distances. Conclusions: Diffractive trifocal IOLs show chromatic aberrations with an increase in depth of focus under polychromatic light. This effect likely contributes to the extended range of vision

    A NEW TRIFOCAL DESIGN

    Full text link
    Purpose: Contributions of IOL biomaterial (Abbe #) and diffractive pattern topography on LCA of various types of multifocal IOLs. Methods: The LCAs associated with the different focal points of diffractive hydrophobic – made of aromatic and/or aliphatic materials – and hydrophilic multifocal IOLs were experimentally determined on an optical bench in RGB conditions (650, 546 and 480 nm). The effects of Abbe number and of the topography of the different diffractive profiles were evaluated. Based on wavelength–dependent MTF through-focus curves, polychromatic behavior of multifocal IOLs was assessed. Results: LCA amplitudes and signs were different for each of the focal points. While far vision LCA was of negative sign and appeared to be controlled by the material Abbe number, the diffractive LCA for near and intermediate visions was independent of IOL material. The diffractive pattern characteristics, which control the closer distance powers, prove to be pivotal in fine-tuning the LCA related to these near and intermediate foci. Conclusions: Diffractive multifocal IOLs show chromatic aberrations with are controlled by the biomaterial Abbe number for its refractive component on the one hand, and by the topography of the diffractive pattern for the second component on the other hand
    corecore