477 research outputs found

    Black Branes as Piezoelectrics

    Full text link
    We find a realization of linear electroelasticity theory in gravitational physics by uncovering a new response coefficient of charged black branes, exhibiting their piezoelectric behavior. Taking charged dilatonic black strings as an example and using the blackfold approach we measure their elastic and piezolectric moduli. We also use our results to draw predictions about the equilibrium condition of charged dilatonic black rings in dimensions higher than six.Comment: v2: 9 pages; important sign corrections in section 3 and other minor corrections; published in PR

    Infants’ emotional and social experiences during and after the transition to early childhood education and care

    Get PDF
    The socio-emotional experiences of infants during transitions to early childhood education and care (ECEC) and across their first year in these out-of-home contexts are not well known. In an international project across five countries (New Zealand, Finland, Australia, Scotland and the United States), observational data, video of key moments, plus re-probing interviews with parents and teachers concerning 10 infants (six females) aged 5–13 months were collected across the first year of ECEC. An embedded case study design was used to analyse infant experiences from both quantitative and qualitative perspectives. Findings indicated low positive affect on infants’ first day of ECEC that increased after the first week and throughout the first year of ECEC. Drop-off periods remained a time of negative emotionality for the first month of ECEC. Over time more positive emotional experiences were evident, with peer interactions fostering positive affect, activeness and involvement, while one-on-one interactions with teachers were an important context for interpersonal engagement and well-being. These findings shed light on the highly charged emotional experience for infants when they transition to institutional care, and how these might be ameliorated in practice.peerReviewe

    The role of a class III gibberellin 2-oxidase in tomato internode elongation

    Full text link
    [EN] A network of environmental inputs and internal signaling controls plant growth, development and organ elongation. In particular, the growth-promoting hormone gibberellin (GA) has been shown to play a significant role in organ elongation. The use of tomato as a model organism to study elongation presents an opportunity to study the genetic control of internode-specific elongation in a eudicot species with a sympodial growth habit and substantial internodes that can and do respond to external stimuli. To investigate internode elongation, a mutant with an elongated hypocotyl and internodes but wild-type petioles was identified through a forward genetic screen. In addition to stem-specific elongation, this mutant, named tomato internode elongated -1 (tie-1) is more sensitive to the GA biosynthetic inhibitor paclobutrazol and has altered levels of intermediate and bioactive GAs compared with wild-type plants. The mutation responsible for the internode elongation phenotype was mapped to GA2oxidase 7, a class III GA 2-oxidase in the GA biosynthetic pathway, through a bulked segregant analysis and bioinformatic pipeline, and confirmed by transgenic complementation. Furthermore, bacterially expressed recombinant TIE protein was shown to have bona fide GA 2-oxidase activity. These results define a critical role for this gene in internode elongation and are significant because they further the understanding of the role of GA biosynthetic genes in organ-specific elongation.This work used the Vincent J. Coates Genomics Sequencing Laboratory at UC Berkeley, supported by NIH S10 Instrumentation Grants S10RR029668 and S10RR027303. We thank the Tomato Genetics Resource Center for providing seed of the M82 and Heinz cultivars. The material was developed by and/or obtained from the UC Davis/C M Rick Tomato Genetics Resource Center and maintained by the Department of Plant Sciences, University of California, Davis, CA 95616, USA. We thank Anthony Bolger, Alisdair Fernie and Bjorn Usadel for providing us with access to pre-publication genomic reads of the S. lycopersicum cultivar M82, and Cristina Urbez and Noel Blanco-Tourinan (IBMCP, Spain) for technical help with in vitro production of TIE1. This work was supported in part by the Elsie Taylor Stocking Memorial Fellowship awarded to ASL in 2013, by NSF grant IOS-0820854, by USDA National Institute of Food and Agriculture project CA-D-PLB-2465-H, by internal UC Davis funds, and by Spanish Ministry of Economy and Competitiveness grant BFU2016-80621-P.Lavelle, A.; Gath, N.; Devisetty, U.; Carrera Bergua, E.; Lopez Diaz, I.; Blazquez Rodriguez, MA.; Maloof, J. (2018). The role of a class III gibberellin 2-oxidase in tomato internode elongation. The Plant Journal. https://doi.org/10.1111/tpj.14145SAndrĂ©s, F., Porri, A., Torti, S., Mateos, J., Romera-Branchat, M., GarcĂ­a-MartĂ­nez, J. L., 
 Coupland, G. (2014). SHORT VEGETATIVE PHASE reduces gibberellin biosynthesis at theArabidopsisshoot apex to regulate the floral transition. Proceedings of the National Academy of Sciences, 111(26), E2760-E2769. doi:10.1073/pnas.1409567111Bolger, A., Scossa, F., Bolger, M. E., Lanz, C., Maumus, F., Tohge, T., 
 Fernie, A. R. (2014). The genome of the stress-tolerant wild tomato species Solanum pennellii. Nature Genetics, 46(9), 1034-1038. doi:10.1038/ng.3046Bowen, M. E., Henke, K., Siegfried, K. R., Warman, M. L., & Harris, M. P. (2011). Efficient Mapping and Cloning of Mutations in Zebrafish by Low-Coverage Whole-Genome Sequencing. Genetics, 190(3), 1017-1024. doi:10.1534/genetics.111.136069Burset, M. (2000). Analysis of canonical and non-canonical splice sites in mammalian genomes. Nucleic Acids Research, 28(21), 4364-4375. doi:10.1093/nar/28.21.4364Chen, W., Yao, J., Chu, L., Yuan, Z., Li, Y., & Zhang, Y. (2015). Genetic mapping of the nulliplex-branch gene (gb_nb1) in cotton using next-generation sequencing. Theoretical and Applied Genetics, 128(3), 539-547. doi:10.1007/s00122-014-2452-2Cingolani, P., Platts, A., Wang, L. L., Coon, M., Nguyen, T., Wang, L., 
 Ruden, D. M. (2012). A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. Fly, 6(2), 80-92. doi:10.4161/fly.19695Cuperus, J. T., Montgomery, T. A., Fahlgren, N., Burke, R. T., Townsend, T., Sullivan, C. M., & Carrington, J. C. (2009). Identification of MIR390a precursor processing-defective mutants in Arabidopsis by direct genome sequencing. Proceedings of the National Academy of Sciences, 107(1), 466-471. doi:10.1073/pnas.0913203107Curtis, M. D., & Grossniklaus, U. (2003). A Gateway Cloning Vector Set for High-Throughput Functional Analysis of Genes in Planta. Plant Physiology, 133(2), 462-469. doi:10.1104/pp.103.027979Devisetty, U. K., Covington, M. F., Tat, A. V., Lekkala, S., & Maloof, J. N. (2014). Polymorphism Identification and Improved Genome Annotation ofBrassica rapaThrough Deep RNA Sequencing. G3: Genes|Genomes|Genetics, 4(11), 2065-2078. doi:10.1534/g3.114.012526Eckardt, N. A. (2007). GA Perception and Signal Transduction: Molecular Interactions of the GA Receptor GID1 with GA and the DELLA Protein SLR1 in Rice. The Plant Cell, 19(7), 2095-2097. doi:10.1105/tpc.107.054916Ernst, H. A., Lo Leggio, L., WillemoĂ«s, M., Leonard, G., Blum, P., & Larsen, S. (2006). Structure of the Sulfolobus solfataricus α-Glucosidase: Implications for Domain Conservation and Substrate Recognition in GH31. Journal of Molecular Biology, 358(4), 1106-1124. doi:10.1016/j.jmb.2006.02.056Fillatti, J. J., Kiser, J., Rose, R., & Comai, L. (1987). Efficient Transfer of a Glyphosate Tolerance Gene into Tomato Using a Binary Agrobacterium Tumefaciens Vector. Nature Biotechnology, 5(7), 726-730. doi:10.1038/nbt0787-726Garrison , E. Marth , G. 2012 Haplotype-based variant detection from short-read sequencingHedden, P., & Graebe, J. E. (1985). Inhibition of gibberellin biosynthesis by paclobutrazol in cell-free homogenates ofCucurbita maxima endosperm andMalus pumila embryos. Journal of Plant Growth Regulation, 4(1-4), 111-122. doi:10.1007/bf02266949Kimura, S., & Sinha, N. (2008). Tomato (Solanum lycopersicum): A Model Fruit-Bearing Crop. Cold Spring Harbor Protocols, 2008(12), pdb.emo105-pdb.emo105. doi:10.1101/pdb.emo105Koenig, D., Jimenez-Gomez, J. M., Kimura, S., Fulop, D., Chitwood, D. H., Headland, L. R., 
 Maloof, J. N. (2013). Comparative transcriptomics reveals patterns of selection in domesticated and wild tomato. Proceedings of the National Academy of Sciences, 110(28), E2655-E2662. doi:10.1073/pnas.1309606110Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 25(14), 1754-1760. doi:10.1093/bioinformatics/btp324Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., 
 Homer, N. (2009). The Sequence Alignment/Map format and SAMtools. Bioinformatics, 25(16), 2078-2079. doi:10.1093/bioinformatics/btp352Li, J., Sima, W., Ouyang, B., Wang, T., Ziaf, K., Luo, Z., 
 Ye, Z. (2012). Tomato SlDREB gene restricts leaf expansion and internode elongation by downregulating key genes for gibberellin biosynthesis. Journal of Experimental Botany, 63(18), 6407-6420. doi:10.1093/jxb/ers295Lorrain, S., & Fankhauser, C. (2012). Plant Development: Should I Stop or Should I Grow? Current Biology, 22(16), R645-R647. doi:10.1016/j.cub.2012.06.054Menda, N., Semel, Y., Peled, D., Eshed, Y., & Zamir, D. (2004). In silicoscreening of a saturated mutation library of tomato. The Plant Journal, 38(5), 861-872. doi:10.1111/j.1365-313x.2004.02088.xMichelmore, R. W., Paran, I., & Kesseli, R. V. (1991). Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proceedings of the National Academy of Sciences, 88(21), 9828-9832. doi:10.1073/pnas.88.21.9828Pimenta Lange, M. J., Liebrandt, A., Arnold, L., Chmielewska, S.-M., Felsberger, A., Freier, E., 
 Lange, T. (2013). Functional characterization of gibberellin oxidases from cucumber, Cucumis sativus L. Phytochemistry, 90, 62-69. doi:10.1016/j.phytochem.2013.02.006Raskin, I., & Kende, H. (1984). Role of Gibberellin in the Growth Response of Submerged Deep Water Rice. Plant Physiology, 76(4), 947-950. doi:10.1104/pp.76.4.947Reinecke, D. M., Wickramarathna, A. D., Ozga, J. A., Kurepin, L. V., Jin, A. L., Good, A. G., & Pharis, R. P. (2013). Gibberellin 3-oxidase Gene Expression Patterns Influence Gibberellin Biosynthesis, Growth, and Development in Pea. PLANT PHYSIOLOGY, 163(2), 929-945. doi:10.1104/pp.113.225987Robinson, M. D., & Oshlack, A. (2010). A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biology, 11(3), R25. doi:10.1186/gb-2010-11-3-r25Robinson, M. D., McCarthy, D. J., & Smyth, G. K. (2009). edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26(1), 139-140. doi:10.1093/bioinformatics/btp616Robinson, J. T., ThorvaldsdĂłttir, H., Winckler, W., Guttman, M., Lander, E. S., Getz, G., & Mesirov, J. P. (2011). Integrative genomics viewer. Nature Biotechnology, 29(1), 24-26. doi:10.1038/nbt.1754Schneeberger, K., Ossowski, S., Lanz, C., Juul, T., Petersen, A. H., Nielsen, K. L., 
 Andersen, S. U. (2009). SHOREmap: simultaneous mapping and mutation identification by deep sequencing. Nature Methods, 6(8), 550-551. doi:10.1038/nmeth0809-550Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9(7), 671-675. doi:10.1038/nmeth.2089Schomburg, F. M., Bizzell, C. M., Lee, D. J., Zeevaart, J. A. D., & Amasino, R. M. (2002). Overexpression of a Novel Class of Gibberellin 2-Oxidases Decreases Gibberellin Levels and Creates Dwarf Plants. The Plant Cell, 15(1), 151-163. doi:10.1105/tpc.005975Seo, M., Jikumaru, Y., & Kamiya, Y. (2011). Profiling of Hormones and Related Metabolites in Seed Dormancy and Germination Studies. Methods in Molecular Biology, 99-111. doi:10.1007/978-1-61779-231-1_7Sun, T. (2011). The Molecular Mechanism and Evolution of the GA–GID1–DELLA Signaling Module in Plants. Current Biology, 21(9), R338-R345. doi:10.1016/j.cub.2011.02.036Sun, T., & Gubler, F. (2004). MOLECULAR MECHANISM OF GIBBERELLIN SIGNALING IN PLANTS. Annual Review of Plant Biology, 55(1), 197-223. doi:10.1146/annurev.arplant.55.031903.141753Thorvaldsdottir, H., Robinson, J. T., & Mesirov, J. P. (2012). Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Briefings in Bioinformatics, 14(2), 178-192. doi:10.1093/bib/bbs017(2012). The tomato genome sequence provides insights into fleshy fruit evolution. Nature, 485(7400), 635-641. doi:10.1038/nature11119Trapnell, C., Pachter, L., & Salzberg, S. L. (2009). TopHat: discovering splice junctions with RNA-Seq. Bioinformatics, 25(9), 1105-1111. doi:10.1093/bioinformatics/btp120Trapnell, C., Roberts, A., Goff, L., Pertea, G., Kim, D., Kelley, D. R., 
 Pachter, L. (2012). Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nature Protocols, 7(3), 562-578. doi:10.1038/nprot.2012.016Tsai, H., Howell, T., Nitcher, R., Missirian, V., Watson, B., Ngo, K. J., 
 Comai, L. (2011). Discovery of Rare Mutations in Populations: TILLING by Sequencing. Plant Physiology, 156(3), 1257-1268. doi:10.1104/pp.110.169748Ueguchi-Tanaka, M., Nakajima, M., Katoh, E., Ohmiya, H., Asano, K., Saji, S., 
 Matsuoka, M. (2007). Molecular Interactions of a Soluble Gibberellin Receptor, GID1, with a Rice DELLA Protein, SLR1, and Gibberellin. The Plant Cell, 19(7), 2140-2155. doi:10.1105/tpc.106.043729Wickham, H. (2016). ggplot2. Use R! doi:10.1007/978-3-319-24277-4Winter, D., Vinegar, B., Nahal, H., Ammar, R., Wilson, G. V., & Provart, N. J. (2007). An «Electronic Fluorescent Pictograph» Browser for Exploring and Analyzing Large-Scale Biological Data Sets. PLoS ONE, 2(8), e718. doi:10.1371/journal.pone.0000718Xu, H., Liu, Q., Yao, T., & Fu, X. (2014). Shedding light on integrative GA signaling. Current Opinion in Plant Biology, 21, 89-95. doi:10.1016/j.pbi.2014.06.010Yamaguchi, S. (2008). Gibberellin Metabolism and its Regulation. Annual Review of Plant Biology, 59(1), 225-251. doi:10.1146/annurev.arplant.59.032607.09280

    Observational study of the development and evaluation of a fertility preservation patient decision aid for teenage and adult women diagnosed with cancer: The Cancer, Fertility and Me research protocol

    Get PDF
    Introduction: Women diagnosed with cancer and facing potentially sterilising cancer treatment have to make time-pressured decisions regarding fertility preservation with specialist fertility services whilst undergoing treatment of their cancer with oncology services. Oncologists identify a need for resources enabling them to support women’s fertility preservation decisions more effectively; women report wanting more specialist information to make these decisions. The overall aim of the ‘Cancer, Fertility and Me’ study is to develop and evaluate a new evidence-based patient decision aid (ptDA) for women with any cancer considering fertility preservation to address this unmet need. Methods and analysis: This is a prospective mixed-method observational study including women of reproductive age (16 years +) with a new diagnosis of any cancer across two regional cancer and fertility centres in Yorkshire, UK. The research involves three stages. In Stage 1 the aim is to develop the ptDA using a systematic method of evidence synthesis and multidisciplinary expert review of current clinical practice and patient information. In Stage 2, the aim is to assess the face validity of the ptDA. Feedback on its content and format will be ascertained using both questionnaires and interviews with patients, user groups and key stakeholders. Finally, in Stage 3 the acceptability of using this resource when integrated into usual cancer care pathways at the point of cancer diagnosis and treatment planning will be evaluated. This will involve a quantitative and qualitative evaluation of the ptDA in clinical practice. Measures chosen include using count data of the ptDAs administered in clinics and accessed online, decisional and patient-reported outcome measures and qualitative feedback. Quantitative data will be analysed using descriptive statistics, paired sample t tests and confidence intervals; interviews will be analysed using thematic analysis. Ethics and dissemination: Research Ethics Committee approval (Ref: 16/EM/0122) and Health Research Authority approval (Ref: 194751) has been granted. Findings will be published in open access peer-reviewed journals, presented at conferences for academic and health professional audiences, with feedback to health professionals and program managers. The Cancer, Fertility and Me ptDA will be disseminated via a diverse range of open-access media, study and charity websites, professional organisations and academic sources. External endorsement will be sought from the International Patient Decision Aid Standards (IPDAS) Collaboration inventory of ptDAs and other relevant professional organisations e.g. the British Fertility Society. Trial registration number: NCT02753296 (www.clinicaltrials.gov); pre-results

    The impact of Charlson comorbidity index on the functional capacity of COVID-19 survivors: a prospective cohort study with one-year follow-up

    Get PDF
    Objective: To determine the association between the Charlson comorbidity index (CCI) score after discharge with 6-min walk test (6MWT) 1 year after discharge in a cohort of COVID-19 survivors. Methods: In this prospective study, data were collected from a consecutive sample of patients hospitalized for COVID-19. The CCI score was calculated from the comorbidity data. The main outcome was the distance walked in the 6MWT at 1 year after discharge. Associations between CCI and meters covered in the 6MWT were assessed through crude and adjusted linear regressions. The model was adjusted for possible confounding factors (sex, days of hospitalization, and basal physical capacity through sit-to-stand test one month after discharge). Results: A total of 41 patients were included (mean age 58.8 +/- 12.7 years, 20/21 men/women). A significant association was observed between CCI and 6MWT (meters): (i) crude model: beta = -18.7, 95% CI = -34.7 to -2.6, p < 0.05; (ii) model adjusted for propensity score including sex, days of hospitalization, and sit-to-stand: beta = -23.0, 95% CI = -39.1 to -6.8, p < 0.05. Conclusions: A higher CCI score after discharge indicates worse performance on the 6MWT at 1-year follow-up in COVID-19 survivors. The CCI score could also be used as a screening tool to make important clinical decisions

    Universal scaling properties of extremal cohesive holographic phases

    Get PDF
    We show that strongly-coupled, translation-invariant holographic IR phases at finite density can be classified according to the scaling behaviour of the metric, the electric potential and the electric flux introducing four critical exponents, independently of the details of the setup. Solutions fall into two classes, depending on whether they break relativistic symmetry or not. The critical exponents determine key properties of these phases, like thermodynamic stability, the (ir)relevant deformations around them, the low-frequency scaling of the optical conductivity and the nature of the spectrum for electric perturbations. We also study the scaling behaviour of the electric flux through bulk minimal surfaces using the Hartnoll-Radicevic order parameter, and characterize the deviation from the Ryu-Takayanagi prescription in terms of the critical exponents.Comment: v4: corrected a typo in eqn (3.29), now (3.28). Conclusions unchange

    Quantization of fields over de Sitter space by the method of generalized coherent states

    Full text link
    A system of generalized coherent states for the de Sitter group obeying the Klein-Gordon equation and corresponding to the massive spin zero particles over the de Sitter space is considered. This allows us to construct the quantized scalar field by the resolution over these coherent states; the corresponding propagator is computed by the method of analytic continuation to the complex de Sitter space and coincides with expressions obtained previously by other methods. Considering the case of spin 1/2 we establish the connection of the invariant Dirac equation over the de Sitter space with irreducible representations of the de Sitter group. The set of solutions of this equation is obtained in the form of the product of two different systems of generalized coherent states for the de Sitter group. Using these solutions the quantized Dirac field over de Sitter space is constructed and its propagator is found. It is a result of action of some de Sitter invariant spinor operator onto the spin zero propagator with an imaginary shift of a mass. We show that the constructed propagators possess the de Sitter-invariance and causality properties.Comment: 19 pages, LATEX, using ioplppt.sty and iopfts.st
    • 

    corecore