6,340 research outputs found

    The advanced solar cell orbital test

    Get PDF
    The motivation for advanced solar cell flight experiments is discussed and the Advanced Solar Cell Orbital Test (ASCOT) flight experiment is described. Details of the types of solar cells included in the test and the kinds of data to be collected are given. The orbit will expose the cells to a sufficiently high radiation dose that useful degradation data will be obtained in the first year

    Think Different: Applying the Old Macintosh Mantra to the Computability of the SUSY Auxiliary Field Problem

    Get PDF
    Starting with valise supermultiplets obtained from 0-branes plus field redefinitions, valise adinkra networks, and the "Garden Algebra," we discuss an architecture for algorithms that (starting from on-shell theories and, through a well-defined computation procedure), search for off-shell completions. We show in one dimension how to directly attack the notorious "off-shell auxiliary field" problem of supersymmetry with algorithms in the adinkra network-world formulation.Comment: 28 pages, 1 figur

    Risk of Increased Fragmentation Events Due to Low Altitude Large Constellation Spacecraft

    Get PDF
    Orbital debris experts and industry leaders are concerned about the added hazard that thousands of additional spacecraft would have on the future orbital debris environment. Large constellations proposals plan to deploy spacecraft at altitudes from 1100 km to 1300 km, where fragmentation debris can take thousands of years or longer to decay naturally, while other proposals include deploying spacecraft at station-keeping altitudes from 300 km to 600 km. Although these lower altitude spacecraft are compliant with the 25-year rule, there is still an increased risk of accidental explosions generating high velocity fragments that could damage international spacecraft assets. The NASA Orbital Debris Program Office (ODPO) has conducted several parametric studies that examine the potential negative environmental impacts of large constellation deployments. This study addresses the lower altitude constellations and the potential risk that they impose on the future environment during mission operations. The projected future environment is generated as the average of 100 LEGEND Monte Carlo (MC) simulation runs while adjusting parameters such as average probability of explosion and operational lifetime per constellation. Results of the effect of accidental explosions of large constellation spacecraft on the environment below 600 km altitude are analyzed

    The effects of localized damping on structural response

    Get PDF
    The effect of localized structural damping on the excitability of higher order normal modes of the large space telescope was investigated. A preprocessor computer program was developed to incorporate Voigt structural joint damping models in a NASTRAN finite-element dynamic model. A postprocessor computer program was developed to select critical modes for low-frequency attitude control problems and for higher frequency fine-stabilization problems. The mode selection is accomplished by ranking the flexible modes based on coefficients for rate gyro, position gyro, and optical sensors, and on image-plane motions due to sinusoidal or random power spectral density force and torque inputs

    On Graph-Theoretic Identifications of Adinkras, Supersymmetry Representations and Superfields

    Full text link
    In this paper we discuss off-shell representations of N-extended supersymmetry in one dimension, ie, N-extended supersymmetric quantum mechanics, and following earlier work on the subject codify them in terms of certain graphs, called Adinkras. This framework provides a method of generating all Adinkras with the same topology, and so also all the corresponding irreducible supersymmetric multiplets. We develop some graph theoretic techniques to understand these diagrams in terms of a relatively small amount of information, namely, at what heights various vertices of the graph should be "hung". We then show how Adinkras that are the graphs of N-dimensional cubes can be obtained as the Adinkra for superfields satisfying constraints that involve superderivatives. This dramatically widens the range of supermultiplets that can be described using the superspace formalism and organizes them. Other topologies for Adinkras are possible, and we show that it is reasonable that these are also the result of constraining superfields using superderivatives. The family of Adinkras with an N-cubical topology, and so also the sequence of corresponding irreducible supersymmetric multiplets, are arranged in a cyclical sequence called the main sequence. We produce the N=1 and N=2 main sequences in detail, and indicate some aspects of the situation for higher N.Comment: LaTeX, 58 pages, 52 illustrations in color; minor typos correcte

    Effect of damping on excitability of high-order normal modes

    Get PDF
    The effect of localized structural damping on the excitability of higher-order large space telescope spacecraft modes is investigated. A preprocessor computer program is developed to incorporate Voigt structural joint damping models in a finite-element dynamic model. A postprocessor computer program is developed to select critical modes for low-frequency attitude control problems and for higher-frequency fine-stabilization problems. The selection is accomplished by ranking the flexible modes based on coefficients for rate gyro, position gyro, and optical sensor, and on image-plane motions due to sinusoidal or random PSD force and torque inputs

    The Real Anatomy of Complex Linear Superfields

    Full text link
    Recent work on classicication of off-shell representations of N-extended worldline supersymmetry without central charges has uncovered an unexpectedly vast number--trillions of even just (chromo)topology types--of so called adinkraic supermultiplets. Herein, we show by explicit analysis that a long-known but rarely used representation, the complex linear supermultiplet, is not adinkraic, cannot be decomposed locally, but may be reduced by means of a Wess-Zumino type gauge. This then indicates that the already unexpectedly vast number of adinkraic off-shell supersymmetry representations is but the proverbial tip of the iceberg.Comment: 21 pages, 4 figure

    Drying and shrinkage of computer simulated paper

    Get PDF
    We describe the modelling and computation of paper shrinkage during drying, using a finite difference method and simulated paper structure. Radial contraction of drying fibres leads to axial compression of crossing, bonded fibres. This microcompression process makes a major contribution to the shrinkage of the paper. The influence of fibre orientation is computed, and shown to be very significant, in accordance with observations. The method relies on the possibility of maintaining fixed anisotropic stiffness constants as the network rotates

    The N=2 Super Yang-Mills Low-Energy Effective Action at Two Loops

    Full text link
    We have carried out a two loop computation of the low-energy effective action for the four-dimensional N=2 supersymmetric Yang-Mills system coupled to hypermultiplets, with the chiral superfields of the vector multiplet lying in an abelian subalgebra. We have found a complete cancellation at the level of the integrands of Feynman amplitudes, and therefore the two loop contribution to the action, effective or Wilson, is identically zero.Comment: 8 pages, Latex, 2 .eps figure
    corecore