In this paper we discuss off-shell representations of N-extended
supersymmetry in one dimension, ie, N-extended supersymmetric quantum
mechanics, and following earlier work on the subject codify them in terms of
certain graphs, called Adinkras. This framework provides a method of generating
all Adinkras with the same topology, and so also all the corresponding
irreducible supersymmetric multiplets. We develop some graph theoretic
techniques to understand these diagrams in terms of a relatively small amount
of information, namely, at what heights various vertices of the graph should be
"hung".
We then show how Adinkras that are the graphs of N-dimensional cubes can be
obtained as the Adinkra for superfields satisfying constraints that involve
superderivatives. This dramatically widens the range of supermultiplets that
can be described using the superspace formalism and organizes them. Other
topologies for Adinkras are possible, and we show that it is reasonable that
these are also the result of constraining superfields using superderivatives.
The family of Adinkras with an N-cubical topology, and so also the sequence
of corresponding irreducible supersymmetric multiplets, are arranged in a
cyclical sequence called the main sequence. We produce the N=1 and N=2 main
sequences in detail, and indicate some aspects of the situation for higher N.Comment: LaTeX, 58 pages, 52 illustrations in color; minor typos correcte