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1 Introduction

In 1979, one of the authors (SJG) was invited to the California Institute of Technology by

Dr. J.H. Schwarz for a program of study on the issue of finding a set of auxiliary fields

with which to close the supersymmetry algebra on the component fields of the 10D, N = 1

Maxwell vector supermultiplet without the use of equations of motion. The study was not

completely satisfactory as no set of such fields were identified. This situation has remains

unchanged.

Later in 1981, there was formulated a “No-Go” theorem [1] which apparently explained

the result of the earlier study. The abstract to this paper by Siegel and Roček that presented

the theorem read
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Applying a simple counting argument to all supermultiplets, we find that for

the N = 4 super Yang-Mills theory the auxiliary field problem cannot have a

solution within any previously known framework. We propose alternatives.

Since the 4D, N = 4 Maxwell vector supermultiplet is related to the 10D, N = 1

version via torus compactification, the study result would seem covered.

While this argument is simple and elegant, it has at least one puzzling aspect.

It is widely accepted that the 10D, N = 1 and 4D, N = 4 Maxwell supermultiplets can

be embedded within a formulation involving unconstrained super p-forms. This fact should

imply the existence of some type of off-shell formulation containing the fields of the on-shell

theory. Based on this superspace argument there should exist an off-shell completion of

the 4D, N = 4 Maxwell supermultiplet.

It has been known since the work of [2] that the super 1-form formulation of the 10D,

N = 1 Maxwell and Yang-Mills supermultiplets have a rather distinctive structure in terms

of the constraints that describe the theories in comparison to other similar theories. In the

10D case, there is a spinor-spinor field strength component that vanishes in three, four, and

six dimensions [3] is non-zero in ten dimensions. This difference was used in the work of [2]

to provide the first superspace description of the lowest order open superstring corrections

and has been verified a number of times since (see e.g. [3–7]).

Thus, there exists a contrast between these two widely accepted results. The work

in [1] concerns the action (with off-shell supersymmetry), while [2] gives only the field

equations (thus on-shell, although with contributions from integrating out higher massive

modes from the open superstring. Of course, the resolution of the contrast must lie in the

fact that some assumption made in one approach does not apply to the other. Knowing

this, however, does not provide a detailed explanation.

In 1995, the presence of sets of matrices with certain regularities [8, 9] was noted

to occur (presumably) in all 1D systems that realize supersymmetry in a linear manner.

The matrices (given the designation of L-matrices and R-matrices) would later become

recognized as the adjacency matrices of adinkra networks [10]. This latter identification

became critical in providing a definition of these matrices independent of field theory

models and opening a path to totally unexpected connections to subjects such as cubical

cohomology [11], error-correcting codes [12–14], ranked poset [15], Coxeter Groups [17] and

most recently Riemann surfaces [18].

Soon after our discovery of the ubiquity of L-matrices and R-matrices in 1D SUSY the-

ories, we proposed [19–21] that these might play a vital role in attacking the off-shell SUSY

auxiliary field problem via a technique given the acronym of RADIO. It was envisioned

that this technique permits the derivation of new on-shell and off-shell representations by

starting from a D-dimensional, N -extended theory. The steps of the process begin by

reducing (R) the higher dimensional theory to 1D, followed by performing certain “au-

tomorphic duality” (AD) transformations, next integrating additional 1D representations

(I) and then oxidizing (O) back up to the higher dimensional spacetime. The actions of

(R) and (AD) together produce what we now refer to as “valise supermultiplets.” These

provide the starting point in this current work. The main focus of this work will be to
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indicate how the (I) can be carried out. We discuss the general philosophy of this step and

also show by explicit calculation how this is done.

2 Review of the Siegel-Roček theorem

During 2009 in exchanges between M. Faux and SJG, the following discussion for under-

standing the essential points of the Siegel-Roček argument were noted.

The smallest off-shell N -extended supermultiplets in four-dimensions have 22N−1 com-

ponent fermions and the same number of component bosons. The number of off-shell com-

ponent fermions F in any non-minimal 4D supermultiplet must be an integer multiple of

the component fermions in the minimal multiplet. Thus, F = 22N−1m, where m is some

positive integer.

All fermions carry an odd number of SO(N) fundamental indices. As a result, all

fermions carry an integer multiple of 4N off-shell degrees of freedom, where the 4 reflects

the dimensionality of a minimal spinor.

A given off-shell multiplet has f fermionic degrees of freedom corresponding to prop-

agating degrees of freedom, plus some number of auxiliary fermions. Auxiliary fermions

come paired. It follows that F = f + 2(4N )n, where n counts the number of auxiliary

fermion reduced pairings. Thus, n counts the number of minimal spinors assembled to

form a given auxiliary fermion representation.

By comparing the two restrictions on the number of fermion components, we conclude

f + 8N n = 22N−1m. Adapting this to the 4D cases N = 2 and N = 4, this yields

N = 2 : f + 16n = 8m,

N = 4 : f + 32n = 128m .

For the cases of the N = 2 vector and tensor supermultiplets, we have f = 8, n = 0, and

m = 1. For the case of the N = 4 vector supermultiplet, we have f = 16, since there are

four physical fermions transforming as a 4 under SO(4). We can then rearrange the second

equation above to read n = 4m − 1
2 . This equation has no solutions for integer m and

integer n.

3 In the world of 0-brane valise supermultiplets

All our previous explorations suggests that via the (R) and (AD) steps of the RADIO

proposal, any linear representation of spacetime supersymmetry can be made to depend

on a single real parameter in the forward light-cone [22]. Under field redefinition using

derivatives or integrals, such representations can be brought to a universal form of a valise

supermultiplet

Da ΦΛ = i (LΛ) a
Λ̂ Ψ

Λ̂
, DaΨΛ̂

=
(
RΛ
)

Λ̂ a ∂τ ΦΛ . (3.1)

Here the explicit forms of the constants (LΛ) a
Λ̂ and

(
RΛ
)

Λ̂ a, as well as the field variables

ΦΛ, and Ψ
Λ̂

vary from supermultiplet to supermultiplet. The condition that the field
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variables in (3.1) form representations of spacetime supersymmetry just takes the simplified

form

{Da , Db } = i 2 (γ0)a b∂τ , (3.2)

when calculated on any of the component fields from any of the supermultiplets.

Implementing the (R) and (AD) parts of the RADIO proposal necessarily breaks

SO(1,3) covariance. However, as noted in [23], in place of the SO(1,3) symmetry a new

SU(2) ⊗ SU(2) symmetry appears in the equations that emerge for off-shell valise super-

multiplets. The generators of these two commuting SU(2) symmetries are given by

i
1

4
[γm, γn] , (3.3)

for the generator of purely spatial rotations and

iγ0 , γ5 , γ0γ5 , (3.4)

for the generators of an extended SU(2) R-symmetry [24].

To make this more concrete, we illustrate some familiar representations after applica-

tion of the (R) and (AD) steps and obtain the results of [23]:

(a.) Chiral Supermultiplet (CS);

DaA = ψa , DaB = i (γ5)a
bψb , DaF = (γ0)a

b ψb , DaG = i (γ5γ0)a
b ψb ,

Daψb = i (γ0)ab ( ∂τA )− (γ5γ0)ab ( ∂τB ) − iCab ( ∂τF ) + (γ5)ab ( ∂τG ) ,
(3.5)

(b.) Vector Supermultiplet (VS);

DaAm = (γm)a
bλb , Dad = i(γ5γ0)a

b λb ,

Daλb = −i (γ0γm)ab ( ∂τAm ) + (γ5)ab ( ∂τd ) ,
(3.6)

(c.) Tensor Supermultiplet (TS);

Daϕ = χa , DaBmn = −1
4([γm, γn])a

bχb ,

Daχb = i(γ0)ab ∂τϕ− i1
2(γ0 [γm, γn])ab ∂τBmn ,

(3.7)

(d.) Axial vector Supermultiplet (AVS);

DaUm = i (γ5γm)a
bλ̃b , Dad̃ = − (γ0)a

b ∂τ λ̃b ,

Daλ̃b = (γ5γ0γm)ab ( ∂τUm ) + iCab d̃ ,
(3.8)

(e.) Axial tensor Supermultiplet (ATS); and

Daϕ̃ = i (γ5)a
bχ̃b , DaB̃mn = − i 1

4(γ5[γm, γn])a
bχ̃b ,

Daχ̃b = −(γ0γ5)ab ∂τ ϕ̃+ 1
2(γ0γ5 [γm, γn])ab ∂τ B̃mn .

(3.9)
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(f.) Real Scalar Supermultiplet (RSS);

DaK = ζa , Dad = −
(
γ0
) d
a

Λd ,

DaM =
1

2
Λa −

1

2

(
γ0
) d
a
ζd , DaN = −i1

2

(
γ5
) d
a

Λd + i
1

2

(
γ5γ0

) d
a
ζd ,

DaU0 = i
1

2

(
γ5γ0

) d
a

Λd − i
1

2

(
γ5
) d
a
ζd , DaUm = i

1

2

(
γ5γm

) d
a

Λd − i
1

2

(
γ5γ0γm

) d
a
ζd ,

Daζb = i
(
γ0
)
ab
∂τK +

(
γ5γµ

)
ab
∂τUµ + iCab∂τM +

(
γ5
)
ab
∂τN ,

DaΛb = i
(
γ0
)
ab
∂τM +

(
γ5γ0

)
ab
∂τN +

(
γ5γ0γν

)
ab
∂τUν + iCab∂τd .

(3.10)

In particular for each of the supermultiplets, one can define a ‘vector’ of bosonic (de-

noted by ΦΛ) and fermionic (denoted by Ψ
Λ̂

) valise supermultiplet variables. In the case

of the CS we have

ΦΛ = (A, B, F, G ) , Ψ
Λ̂

= (ψa ) , (3.11)

for the VS we have

ΦΛ = (Am, d ) , Ψ
Λ̂

= (λa ) , (3.12)

for the TS we have

ΦΛ = (ϕ, Bmn ) , Ψ
Λ̂

= (χa ) , (3.13)

for the AVS we have

ΦΛ =
(
Um, d̃

)
, Ψ

Λ̂
=
(
λ̃a
)
, (3.14)

for the ATS we have

ΦΛ =
(
ϕ̃, B̃mn

)
, Ψ

Λ̂
= ( χ̃a ) , (3.15)

and for the RSS we have

ΦΛ = ( K, M, N, U0, Um, d ) , Ψ
Λ̂

= ( ζa, Λa ) . (3.16)

As seen above, the Λ indices are allowed to range over distinct bosonic representations of

SO(1,3) and similarly the Λ̂ indices (in the most general case) are allowed to range over

distinct fermionic representations of SO(1,3).

The explicit forms of the LΛ and RΛ coefficients can now be read out for each of the

supermultiplets. Furthermore, as seen from these examples, the LΛ and RΛ coefficients

are constructed from Lorentz invariant tensors, γ-matrices, and powers thereof. Thus,

information about the space-time spin of the fields in the supermultiplets is encoded in

these coefficients even though the field variables only depend on time. We conjecture that

every linear off-shell representation of supersymmetry can always be subject to 0-brane

reduction (R), field redefinitions (AD, and possibly linearization) such that equations (3.1)

and (3.2) are satisfied.

Now in order to focus on the SUSY auxiliary field problem, we concentrate solely on

the chiral supermultiplet and vector supermultiplet in the remainder of this section. The
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on-shell version of these two supermultiplets are given below. For the on-shell version of

the chiral supermultiplet we have

DaA = ψa , DaB = i (γ5)a
b ψb ,

Daψb = i (γ0)a b ∂τA − (γ5γ0)a b ∂τB ,
(3.17)

leading to

{ Da , Db }A = i 2 (γ0)a b ∂τ A , { Da , Db }B = i 2 (γ0)a b ∂τ B ,

{ Da , Db }ψc = i 2 (γ0)a b ∂τ ψc − i (γµ)a b (γµγ
0)c

d∂τ ψd .
(3.18)

The final term in (3.18) is characteristic of an on-shell theory, an extra term appears

relative to the off-shell result shown in (3.2). Note that (3.17) is exactly of the same form

as (3.11), but with the important exception that the F and G field variables are deleted.

In the on-shell theory, the absence of these two bosonic fields leads to the extra term in

the evaluation of the algebra acting on the fermionic field. Going from on-shell to off-shell

corresponds by augmenting the bosonic vector from (A, B ) to (A, B, F, G ) and ensures

the condition in (3.2) is satisfied.

The on-shell 0-brane formulation of the vector supermultiplet is given by

DaAm = (γm)a
b λb ,

Daλb = −i (γ0γm)ab ( ∂τAm ) ,
(3.19)

and once again we calculate the anticommutator on the fields

{ Da , Db }Am =i 2 (γ0)a b ∂τ Am ,

{ Da , Db }λc =i 2 (γ0)a b ∂τ λc − i
1

2
(γµ)a b (γµγ

0)c
d ∂τ λd

+ i
1

16
([ γα , γβ ])a b ([ γα , γβ ]γ0)c

d ∂τ λd ,

(3.20)

to see the emergence of two extra terms appearing relative to the off-shell’ result shown

in (3.2). This review has now set the stage for a statement of the off-shell SUSY auxiliary

field problem we study in this work. The result in (3.19) is the same as the result in (3.12)

with the exception that the latter does not include the d bosonic field variable. In the

on-shell’ theory, the absence of the bosonic d field leads to the extra two terms in the

evaluation of the algebra acting on the fermionic fields. So going from on-shell to off-shell

corresponds to increasing the bosonic vector from (Am) to (Am, d ).

For the 0-brane valise chiral supermultiplet with field content vectors described by (3.11),

the commutator algebra (3.2) is satisfied on ΦΛ and on Ψ
Λ̂

. For the 0-brane valise chiral su-

permultiplet with field content vectors described by (3.17), the commutator algebra (3.18)

is satisfied on ΦΛ and on Ψ
Λ̂

. For the 0-brane valise vector supermultiplet with field content

vectors described by (3.12), the commutator algebra (3.2) is satisfied on ΦΛ and on Ψ
Λ̂

.

For the 0-brane valise vector supermultiplet with field content vectors described by (3.19),

the commutator algebra (3.20) is satisfied on ΦΛ and on Ψ
Λ̂

.
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4 A 0-brane-world formulation of the off-shell SUSY auxiliary field prob-

lem

Let ΦΛ(τ), and Ψ
Λ̂

(τ) denote arbitrary bosonic and fermionic sets of functions. All the

bosonic functions satisfy the equation

Φ∆(τ1) ΦΛ(τ2) = +ΦΛ(τ2) Φ∆(τ1) , (4.1)

and all the fermionic functions satisfy the equation

Ψ
∆̂

(τ1) Ψ
Λ̂

(τ2) = −Ψ
Λ̂

(τ2) Ψ
∆̂

(τ1) , (4.2)

The off-shell auxiliary field problem then asks that one determine all sets of bosonic func-

tions ΦΛ(τ), sets of fermionic functions Ψ
Λ̂

(τ), constant coefficients (LΛ) a
Λ̂, and

(
RΛ
)

Λ̂ a

(where these coefficients are constructed from Lorentz invariant tensors and gamma ma-

trices) such that the equations

Da ΦΛ = i (LΛ) a
Λ̂ Ψ

Λ̂
, DaΨΛ̂

=
(
RΛ
)

Λ̂ a ∂τ ΦΛ , (4.3)

necessarily implies

{Da , Db } = i 2 (γ0)a b∂τ , (4.4)

and this should be done in an irreducible manner in the space of field vectors. With the

exception of the 4D, N = 1 double tensor multiplet,1 there is a solution for (4.1)–(4.4)

in the case of every studied supermultiplet known to these authors. The solution to this

problem is generally not known for either N -extended supersymmetry or supersymmetry

in higher space time dimensions than four.

The most prominent case showing such a failure is the 4D, N = 4 Maxwell Supermul-

tiplet. Here the field content vectors take the respective forms

ΦΛ =
(
Am, A

I , BI , d, F I , GI
)
, Ψ

Λ̂
=
(
λa, ψa

I ) , (4.5)

and these are written appropriately for the realization of one of the four supersymmetries

in an off-shell manner. The indices I, J , etc. here and in the following discussion take on

three values. The 0-brane version of an invariant action is given by [25, 26]

L =
1

2
(∂τA

I)(∂τA
I) +

1

2
(∂τB

I)(∂τB
I) +

1

2
(∂τF

I)(∂τF
I) +

1

2
(∂τG

I)(∂τG
I)

+
1

2
(∂τAm)(∂τAm) +

1

2
(∂τd)(∂τd) + i

1

2
(γ0)abψIa∂τψ

I
b + i

1

2
(γ0)cdλc∂τλd .

(4.6)

1See the work in [23] for details.
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The four supercharges can be represented by Da and DIa where

DaA
J =ψJa , DaB

J = i (γ5)a
b ψJb ,

DaF
J =(γ0)a

b ψJb , DaG
J = i (γ5γ0)a

b ψJb ,

Daψ
J
b =i (γ0)a b

(
∂τA

J )− (γ5γ0)a b
(
∂τB

J )
− i Ca b

(
∂τ F

J )+ (γ5)a b
(
∂τG

J ) ,
DaAm =(γm)a

bλb , Dad = i(γ5γ0)a
b λb ,

Daλb =− i(γ0γm)ab ( ∂τAm ) + (γ5)ab ( ∂τd ) ,

DIaA
J =δI J λa − εI JK ψ

K
a ,

DIaB
J =i (γ5)a

b
[
δIJλb + εI JK ψ

K
b

]
,

DIaF
J = (γ0)a

b
[
δI J λb − εI JK ψ

K
b

]
,

DIaG
J =i (γ5γ0)a

b
[
− δIJλb + εI JK ψ

K
b

]
,

DIaψ
J
b =δI J

[
i (γ0γm)ab ( ∂τ Am ) + (γ5)a b (∂τd)

]
+ εI JK

[
i (γ0)a b

(
∂τA

K)+ (γ5γ0)a b
(
∂τB

K)
− i Ca b

(
∂τF

K)− (γ5)a b
(
∂τG

K) ] ,
DIa Am =− (γm)a

b ψIb , DIa d = i (γ5γ0)a
b ψIb ,

DIaλb =i (γ0)a b
(
∂τA

I)− (γ5γ0)a b
(
∂τB

I)
− i Ca b

(
∂τF

I)− (γ5)a b
(
∂τG

I) ,

(4.7)

The three supersymmetries generated by DIa are on-shell. If they were off-shell, the N =

4 extended version of (4.4) would read as

{Da , Db } = i 2 (γ0)a b∂τ , {Da , DIb } = 0 ,

{DIa , DJb } = i 2 δI J (γ0)a b∂τ .
(4.8)

The explicit forms of the coefficients in (4.3) appropriate for this theory can now be read

off from the equations in (4.7) then via direct calculation, it is found [26] that only the first

equation in (4.8) is satisfied by the field content in (4.5).

The strongest interpretation of the Siegel-Roček No-Go Theorem to this 1D valise

formulation would involve claiming there exists no possible extension of the field content

vectors in (4.5) such that the equations in (4.8) can be satisfied. To reach this result,

however, requires an assumption about the form of additional terms that must be added

to (4.6) as in the original discussion.

5 Within the world of adinkra network valise supermultiplets

During the course of our efforts since the work of [27, 28], we have produced evidence

suggesting there exists a way to apply the old Macintosh Mantra of “Think Different” to

the problem stated in the previous section.
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R = # 1 R = # 2

1

1 2 3 4

2 3 4 1

1 2 3 4

2 3 4

Figure 1. Two valise adinkra graphs with node assignment.

This alternative approach starts from networks that precisely encode the same kine-

matic information as the 0-brane-world description of valise supermultiplets. The graphical

representations of these networks were given the name of “adinkras” [10]. Two examples

of these are shown below.

We were led to these graphs by first discovering the adjacency matrices [27, 28] asso-

ciated with them. These adjacency matrices satisfy a set of algebraic conditions we have

named the GR(d, N ) or “Garden Algebra” conditions and have been completely defined

in the works of [11–14]. Via a set of Feynman-like rules (see e.g. [23]), these networks can

be shown to be equivalent to equations

DIΦi = i (LI) i k̂ Ψk̂ , DIΨk̂ = (RI) k̂ i ∂τ Φi =⇒ {DI , DJ } = i 2 δI J ∂τ . (5.1)

5.1 Chiral supermultiplet adinkra network valise off-shell

In the case of the first adinkra network shown in (figure 1), the L-matrices and R-matrices

take the forms given by

(L1) i k̂ =


1 0 0 0

0 0 0 − 1

0 1 0 0

0 0 − 1 0

 , (L2) i k̂ =


0 1 0 0

0 0 1 0

− 1 0 0 0

0 0 0 − 1

 ,

(L3) i k̂ =


0 0 1 0

0 − 1 0 0

0 0 0 − 1

1 0 0 0

 , (L4) i k̂ =


0 0 0 1

1 0 0 0

0 0 1 0

0 1 0 0

 . (5.2)

(R1) k̂ i =


1 0 0 0

0 0 1 0

0 0 0 − 1

0 −1 0 0

 , (R2) k̂ i =


0 0 − 1 0

1 0 0 0

0 1 0 0

0 0 0 − 1

 ,

(R3) k̂ i =


0 0 0 1

0 − 1 0 0

1 0 0 0

0 0 −1 0

 , (R4) k̂ i =


0 1 0 0

0 0 0 1

0 0 1 0

1 0 0 0

 . (5.3)
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These satisfy the Garden Algebra relationships

( LI )i
̂ ( RJ )̂

k + ( LJ )i
̂ ( RI )̂

k = 2 δIJ δi
k ,

( RJ )ı̂
j ( LI )j

k̂ + ( RI )ı̂
j ( LJ )j

k̂ = 2 δIJ δı̂
k̂ .

(5.4)

5.2 Chiral supermultiplet adinkra network valise on-shell

If we delete the open nodes denoted by 3 and 4 in the first adinkra labelled as R = # 1

as well as eliminate all the links associated with those nodes we find,

(L1) i k̂ =

[
1 0 0 0

0 0 0 − 1

]
, (L2) i k̂ =

[
0 1 0 0

0 0 1 0

]
,

(L3) i k̂ =

[
0 0 1 0

0 − 1 0 0

]
, (L4) i k̂ =

[
0 0 0 1

1 0 0 0

]
, (5.5)

(R1) k̂ i =


1 0

0 0

0 0

0 −1

 , (R2) k̂ i =


0 0

1 0

0 1

0 0

 ,

(R3) k̂ i =


0 0

0 − 1

1 0

0 0

 , (R4) k̂ i =


0 1

0 0

0 0

1 0

 . (5.6)

Given the matrices in (5.5) and (5.6) we find the following relations hold

( LI )i
̂ ( RJ )̂

k + ( LJ )i
̂ ( RI )̂

k = 2 δIJ δi
k ,

( RJ )ı̂
j ( LI )j

k̂ + ( RI )ı̂
j ( LJ )j

k̂ = δIJ δı̂
k̂ + [ ~αβ1 ]IJ · ( ~αβ1 )ı̂

k̂ .
(5.7)

The six 4 × 4 matrices ~α and ~β were defined in the work of [23].

It can be seen that the matrices of (5.2) and (5.3) are d × d matrices with d = 4. On

the other hand the matrices in (5.5) are dL × dR, and the matrices in (5.6) are dR × dL
where dL = 2 and dR = 4. We refer to matrices of this sort of structure as representatives

of the GR(dL, dR, N ) algebra.
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5.3 Vector supermultiplet adinkra network valise off-shell

In the case of the second adinkra network shown in (figure 1), the L-matrices and R-matrices

take the forms

(L1) i k̂ =


0 1 0 0

0 0 0 − 1

1 0 0 0

0 0 − 1 0

 , (L2) i k̂ =


1 0 0 0

0 0 1 0

0 − 1 0 0

0 0 0 − 1

 ,

(L3) i k̂ =


0 0 0 1

0 1 0 0

0 0 1 0

1 0 0 0

 , (L4) i k̂ =


0 0 1 0

− 1 0 0 0

0 0 0 − 1

0 1 0 0

 , (5.8)

(R1) k̂ i =


0 0 1 0

1 0 0 0

0 0 0 − 1

0 −1 0 0

 , (R2) k̂ i =


1 0 0 0

0 0 − 1 0

0 1 0 0

0 0 0 − 1

 ,

(R3) k̂ i =


0 0 0 1

0 1 0 0

0 0 1 0

1 0 0 0

 , (R4) k̂ i =


0 −1 0 0

0 0 0 1

1 0 0 0

0 0 −1 0

 . (5.9)

These also satisfy the relationships

( LI )i
̂ ( RJ )̂

k + ( LJ )i
̂ ( RI )̂

k = 2 δIJ δi
k ,

( RJ )ı̂
j ( LI )j

k̂ + ( RI )ı̂
j ( LJ )j

k̂ = 2 δIJ δı̂
k̂ .

(5.10)

5.4 Vector supermultiplet adinkra network valise on-shell

If we erase the fourth open node and its associated links, the forms of the associated

adjacency-like matrices become

(L1) i k̂ =

 0 1 0 0

0 0 0 − 1

1 0 0 0

 , (L2) i k̂ =

 1 0 0 0

0 0 1 0

0 − 1 0 0

 ,
(L3) i k̂ =

 0 0 0 1

0 1 0 0

0 0 1 0

 , (L4) i k̂ =

 0 0 1 0

− 1 0 0 0

0 0 0 − 1

 , (5.11)

(R1) k̂ i =


0 0 1

1 0 0

0 0 0

0 −1 0

 , (R2) k̂ i =


1 0 0

0 0 −1

0 1 0

0 0 0

 ,

(R3) k̂ i =


0 0 0

0 1 0

0 0 1

1 0 0

 , (R4) k̂ i =


0 − 1 1

0 0 0

1 0 0

0 0 − 1

 , (5.12)
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The matrices in (5.8) and (5.9) lead to the following relations

( LI )i
̂ ( RJ )̂

k + ( LJ )i
̂ ( RI )̂

k =2 δIJ δi
k ,

( RJ )ı̂
j ( LI )j

k̂ + ( RI )ı̂
j ( LJ )j

k̂ =
3

2
δIJ ( I4 )ı̂

k̂ − 1

2
[ ~α β2 ]IJ · ( ~α β2 )ı̂

k̂

+
1

2
[ ~α β1 ]IJ · ( ~α β1 )ı̂

k̂

+
1

2
[ ~α β3 ]IJ · ( ~α β3 )ı̂

k̂ .

(5.13)

At this stage, it is obvious that there are some interesting correlations between the

calculations done from the γ-matrices of a 0-brane-world starting point and similar calcu-

lations done from the basis of the adjacency matrices of an adinkra network-world start-

ing point.

For the adinkra network valise chiral supermultiplet with adjacency matrices described

by (5.2), and (5.3) the commutator algebra shown in (5.1) is satisfied on Φi and on Ψk̂. For

the adinkra network valise chiral supermultiplet with adjacency matrices described by (5.5)

and (5.5) the commutator algebra shown in (5.1) is satisfied on Φi, but not on Ψk̂ due to

the second line of (5.7).

For the adinkra network valise vector supermultiplet with adjacency matrices described

by (5.8) and (5.9), the commutator algebra shown in (5.1) is satisfied on Φi and on Ψk̂.

For the adinkra network valise chiral supermultiplet with adjacency matrices described

by (5.11) and (5.12) the commutator algebra shown in (5.1) is satisfied on Φi, but not on

Ψk̂ due to the second line of (5.13).

6 An adinkra network-world formulation of the off-shell SUSY auxiliary

field problem

The off-shell problem in the world of 0-brane valise supermultiplets can be recast into

an equivalent one involving adinkra valise networks. There is one important difference

however. As the starting point is in terms of adinkra networks, there is no information a

priori about Lorentz representations.

Let Φi(τ), and Ψî(τ) denote arbitrary bosonic and fermionic sets of functions associated

with the nodes of a valise adinkra. All the bosonic functions satisfy the equation

Φi(τ1) Φj(τ2) = +Φj(τ2) Φi(τ1) , (6.1)

and all the fermionic functions satisfy the equation

Ψî(τ1) Ψk̂(τ2) = −Ψk̂(τ2) Ψî(τ1) . (6.2)

The off-shell auxiliary field problem then asks that one determine all sets of bosonic func-

tions Φi(τ), sets of fermionic functions Ψ
k̂
(τ), and associated matrices (LI) i k̂ and (RI) k̂ i

to be used in the equations

DIΦi = i (LI) i k̂ Ψk̂ , DIΨk̂ = (RI) k̂ i ∂τ Φi . (6.3)
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Since the definitions of these L-matrices and R-matrices rely on the adinkras networks

we have
( LI )i

̂ ( RJ )̂
k + ( LJ )i

̂ ( RI )̂
k = 2 δIJ δi

k ,

( RJ )ı̂
j ( LI )j

k̂ + ( RI )ı̂
j ( LJ )j

k̂ = 2 δIJ δı̂
k̂ ,

(6.4)

which then imply the result

{DI , DJ } = i 2 δI J ∂τ , (6.5)

on both bosonic and fermionic field variables. According to our previous studies of adinkras,

this is a solved problem.

Thus the question becomes, “How can this information be used to address the off-

shell problem in adinkra network world?” Stated another way, if one is solely given the

information in (5.5) and (5.6) how does one recover (5.2) and (5.3) for the chiral super-

multiplet adinkra? Alternately, given solely the information in (5.11) and (5.12) how does

one recover (5.8) and (5.9) for the vector supermultiplet adinkra?

This will be addressed in the next section with the introduction of the concept of

“On-Shell Adinkra-Network Deformations.”

7 On-shell adinkra network deformations

When one reviews the arguments and equations of section four in comparison with those

in section six, it may seems as though the problems are the same.

The 0-brane-world formulation begins with bosonic variables ΦΛ and fermionic vari-

ables Ψ
Λ̂

in equations of the form

Da ΦΛ = i (LΛ) a
Λ̂ Ψ

Λ̂
, DaΨΛ̂

=
(
RΛ
)

Λ̂ a ∂τ ΦΛ , (7.1)

that ought then necessarily imply

{Da , Db } = i 2 (γ0)a b∂τ , (7.2)

to describe an off-shell supermultiplet.

The adinkra-network world formulation begins with bosonic variables Φi and fermionic

variables Ψk̂ in equations of the form

DIΦi = i (LI) i k̂ Ψk̂ , DIΨk̂ = (RI) k̂ i ∂τ Φi , (7.3)

that ought then necessarily imply

{DI , DJ } = i 2 δI J ∂τ . (7.4)

The similarities between (7.1) and (7.2) on the one hand and (7.3) and (7.4) on the other

are striking. However, computationally and operationally there are subtle differences.

In order to go from (7.1) to (7.2) one must

(1a.) make ansatzë for the coefficients (LΛ) and
(
RΛ
)
,
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(1b.) make ansatzë for the field content vectors ΦΛ and Ψ
Λ̂

,

(1c.) calculate a set of matrix equations involving (LΛ) and
(
RΛ
)

to evaluate on all the

bosonic fields, and

(1d.) calculate a set of Fierz identities involving (LΛ) and
(
RΛ
)

to evaluate on all the

fermionic fields.

This last step is so because the quantities (LΛ) and
(
RΛ
)

are constructed from γ-matrices

and the evaluation of (7.2) acting on fermions in a valise supermultiplet requires evaluation

of Fierz Identities.

In order to go from (7.3) to (7.4) one must

(2a. make ansatzë for the coefficients (LI) and (RI),

(2b.) make ansatzë for the field content vectors Φi and Ψk̂,

(2c.) calculate a set of matrix equations involving (LI) and (RI) to evaluate on all the

bosonic fields, and

(2d.) calculate a set of matrix equations involving (LI) and (RI) to evaluate on all the

fermionic fields.

Obtaining (7.4) from (7.3) does not require knowledge of Fierz Identities as the quanti-

ties (LI) and (RI) are constructed from adinkra network related matrices and only matrix

multiplication is required to evaluate (7.4) on both bosons and fermions. This latter dis-

tinction makes for a substantial difference in the design of algorithms to search for possible

auxiliary fields.

Another savings in required computation occurs because of differences in field content

vectors required for their respective ansatë. In the case of ΦΛ and Ψ
Λ̂

one must include

data about the space-time spin of the component fields. In the case of Φi and Ψk̂ all one

has to do is to require that the range of their respective indices goes from 1 to multiples

of 4. As the spin bundle information of the fields is considerable, any calculation involving

them must keep track of this information.

One of the results of our previous work is it appears such spin-bundle information

emerges from the adinkra networks. In other words, by working with component fields

that only depend on time and possess an SU(2) ×SU(2) symmetry, embedded within four

color networks seems to allow the isospin of the network to completely carry the spin bundle

information for free.

We consider how to create algorithms to go from an on-shell adinkra network to an

off-shell one.

As we have seen (see (5.5) and (5.6) for the on-shell chiral adinkra network and (5.8)

and (5.9) for the on-shell vector adinkra network), in on-shell adinkra networks only some

of the rows or columns are given due to the on-shell nature of the representation. So the

unknown entries in the L-matrices and R-matrices can be represented by real parameters

we will denote by the symbol `. These may be used to augment the rows and columns of
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the L-matrices and R-matrices until one reaches a 4p × 4p matrix in all cases for some

integer p. This is explicitly shown in equations (7.9), (7.10), (7.24), and (7.25) below. The

problem of going from the on-shell adinkra network to a corresponding off-shell one, has

now been reduced to the problem of determining the values of the `-parameters in the

augmented matrices so as to satisfy the conditions in (5.4).

It is amusing to note that this problem is roughly analogous to a cryptographic one.

The on-shell forms of the L-matrices and R-matrices all together for any particular valise

supermultiplet play the role of an encrypted message and finding the corresponding off-shell

L-matrices and R-matrices is analogous to decoding the message.

We now need to specify a series of operations to achieve this. The key to achieving this

is the Garden Algebra (5.4). These conditions can be separated into four different parts

( LI )i
̂ ( RJ )̂

k + ( LJ )i
̂ ( RI )̂

k = 0 where I 6= J . (7.5)

( RJ )ı̂
j ( LI )j

k̂ + ( RI )ı̂
j ( LJ )j

k̂ = 0 where I 6= J . (7.6)

( LI )i
̂ ( RJ )̂

k = δi
k where I = J . (7.7)

( RJ )ı̂
j ( LI )j

k̂ = δı̂
k̂ where I = J . (7.8)

In the subsequent discussion, we show how the use of these for the augmented on-shell

L-matrices and R-matrices leads from on-shell results to off-shell ones in the case of the

chiral and vector adinkra networks.

7.1 On-shell chiral valise matrix deformation

Define four matrices LI where I = 1, 2, 3, or 4 that also depend on eight continuous real

variables denoted by `3 1, `3 2, `3 3, `3 4, `4 1, `4 2, `4 3, and `4 4, via the four equations

(L1) i k̂ =


1 0 0 0

0 0 0 − 1

`3 1 `3 2 `3 3 `3 4

`4 1 `4 2 `4 3 `4 4

 , (L2) i k̂ =


0 1 0 0

0 0 1 0

− `3 2 `3 1 −`3 4 `3 3

− `4 2 `4 1 −`4 4 `4 3

 ,

(L3) i k̂ =


0 0 1 0

0 − 1 0 0

−`3 3 `3 4 `3 1 − `3 2

−`4 3 `4 4 `4 1 − `4 2

 , (L4) i k̂ =


0 0 0 1

1 0 0 0

−`3 4 −`3 3 `3 2 `3 1

−`4 4 −`4 3 `4 2 `4 1

 .
(7.9)

We find that a corresponding set of R-matrices to satisfy (7.5) is given by

(R1) k̂ i =


1 0 `3 1 `4 1

0 0 `3 2 `4 2

0 0 `3 3 `4 3

0 −1 `3 4 `4 4

 , (R2) k̂ i =


0 0 −`3 2 −`4 2

1 0 `3 1 `4 1

0 1 −`3 4 −`4 4

0 0 `3 3 `4 3

 ,

(R3) k̂ i =


0 0 −`3 3 −`4 3

0 −1 `3 4 `4 4

1 0 `3 1 `4 1

0 0 −`3 2 −`4 2

 , (R4) k̂ i =


0 1 −`3 4 −`4 4

0 0 −`3 3 −`4 3

0 0 `3 2 `4 2

1 0 `3 1 `4 1

 . (7.10)
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However, we can use these augmented L-matrices and R-matrices to carry out the calcula-

tions indicated in (7.6). For these calculations we find

( R1 )ı̂
j ( L2 )j

k̂ + ( R2 )ı̂
j ( L1 )j

k̂ =
−2P [1|2]

1 1 1 + P [1|2]
1 2 −P [1|2]

1 3 P [1|2]
1 4

1 + P [1|2]
1 2 2P [1|2]

1 1 P [1|2]
1 4 P [1|2]

1 3

−P [1|2]
1 3 P [1|2]

1 4 −2P [1|2]
3 3 −1 + P [1|2]

3 4

P [1|2]
1 4 P [1|2]

1 3 −1 + P [1|2]
3 4 2P [1|2]

3 3

 ,
(7.11)

where
P [1|2]

1 1 = `31`32 + `41`42 , P [1|2]
1 2 = `231 − `232 + `241 − `242 ,

P [1|2]
1 3 = `32`33 + `31`34 + `42`43 + `41`44 ,

P [1|2]
1 4 = `31`33 − `32`34 + `41`43 − `42`44 ,

P [1|2]
3 3 = `33`34 + `43`44 , P [1|2]

3 4 = `233 − `234 + `243 − `244 ,

(7.12)

( R1 )ı̂
j ( L3 )j

k̂ + ( R3 )ı̂
j ( L1 )j

k̂ =
−2P [1|3]

1 1 −P [1|3]
1 2 1 + P [1|3]

1 3 −P [1|3]
1 4

−P [1|3]
1 2 2P [1|3]

2 2 P [1|3]
1 4 1− P [1|3]

2 4

1 + P [1|3]
1 3 P [1|3]

1 4 2P [1|3]
1 1 −P [1|3]

1 2

−P [1|3]
1 4 1− P [1|3]

2 4 −P [1|3]
1 2 −2P [1|3]

2 2

 ,
(7.13)

where
P [1|3]

1 1 = `31`33 + `41`43 , P [1|3]
1 3 = `231 − `233 + `241 − `243 ,

P [1|3]
1 2 = `32`33 − `31`34 + `42`43 − `41`44 ,

P [1|3]
1 4 = `31`32 + `33`34 + `41`42 + `43`44 ,

P [1|3]
2 2 = `32`34 + `42`44 , P [1|3]

2 4 = `232 − `234 + `242 − `244 ,

(7.14)

( R1 )ı̂
j ( L4 )j

k̂ + ( R4 )ı̂
j ( L1 )j

k̂ =
−2P [1|4]

1 1 −P [1|4]
1 2 P [1|4]

1 3 P [1|4]
1 4

−P [1|4]
1 2 −2P [1|4]

2 2 P [1|4]
2 3 P [1|4]

1 3

P [1|4]
1 3 P [1|4]

2 3 2P [1|4]
2 2 P [1|4]

1 2

P [1|4]
1 4 P [1|4]

1 3 P [1|4]
1 2 2P [1|4]

1 1

 ,
(7.15)

where
P [1|4]

1 1 = `31`34 + `41`44 , P [1|4]
1 4 = `231 − `234 + `241 − `244 ,

P [1|4]
1 2 = `31`33 + `32`34 + `41`43 + `42`44 ,

P [1|4]
1 3 = `31`32 − `33`34 + `41`42 − `43`44 ,

P [1|4]
2 2 = `32`33 + `42`43 , P [1|4]

2 3 = `232 − `233 + `242 − `243 ,

(7.16)
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( R2 )ı̂
j ( L3 )j

k̂ + ( R3 )ı̂
j ( L2 )j

k̂ =
2P [2|3]

1 1 −P [2|3]
1 2 −P [2|3]

1 3 P [2|3]
1 4

−P [2|3]
1 2 2P [2|3]

2 2 P [2|3]
2 3 −P [2|3]

1 3

−P [2|3]
1 3 P [2|3]

2 3 −2P [2|3]
2 2 P [2|3]

1 2

P [2|3]
1 4 −P [2|3]

1 3 P [2|3]
1 2 −2P [2|3]

1 1

 ,
(7.17)

where
P [2|3]

1 1 = `32`33 + `42`43 , P [2|3]
1 4 = `232 − `233 + `242 − `243 ,

P [2|3]
1 2 = `31`33 + `32`34 + `41`43 + `42`44 ,

P [2|3]
1 3 = `31`32 − `33`34 + `41`42 − `43`44 ,

P [2|3]
2 2 = `31`34 + `41`44 , P [2|3]

2 3 = `231 − `234 + `241 − `244 ,

(7.18)

( R2 )ı̂
j ( L4 )j

k̂ + ( R4 )ı̂
j ( L2 )j

k̂ =
2P [2|4]

1 1 P [2|4]
1 2 1− P [2|4]

1 3 −P [2|4]
1 4

P [2|4]
1 2 −2P [2|4]

2 2 P [2|4]
1 4 1 + P [2|4]

2 4

1− P [2|4]
1 3 P [2|4]

1 4 −2P [2|4]
1 1 P [2|4]

1 2

−P [2|4]
1 4 1 + P [2|4]

2 4 P [2|4]
1 2 2P [2|4]

2 2

 ,
(7.19)

where
P [2|4]

1 1 = `32`34 + `42`44 , P [2|4]
1 3 = `232 − `234 + `242 − `244 ,

P [2|4]
1 2 = `32`33 − `31`34 + `42`43 − `41`44 ,

P [2|4]
1 4 = `31`32 + `33`34 + `41`42 + `43`44 ,

P [2|4]
2 2 = `31`33 + `41`43 , P [2|4]

2 4 = `231 − `233 + `241 − `243 ,

(7.20)

( R3 )ı̂
j ( L4 )j

k̂ + ( R4 )ı̂
j ( L3 )j

k̂ =
2P [3|4]

1 1 −1 + P [3|4]
1 2 −P [3|4]

1 3 −P [3|4]
1 4

−1 + P [3|4]
1 2 −2P [3|4]

1 1 −P [3|4]
1 4 P [3|4]

1 3

−P [3|4]
1 3 −P [3|4]

1 4 2P [3|4]
3 3 1 + P [3|4]

3 4

−P [3|4]
1 4 P [3|4]

1 3 1 + P [3|4]
3 4 −2P [3|4]

3 3

 ,
(7.21)

where
P [3|4]

1 1 = `33`34 + `43`44 , P [3|4]
1 2 = `233 − `234 + `243 − `244 ,

P [3|4]
1 3 = `32`33 + `31`34 + `42`43 + `41`44 ,

P [3|4]
1 4 = `31`33 − `32`34 + `41`43 − `42`44 ,

P [3|4]
3 3 = `31`32 + `41`42 , P [3|4]

3 4 = `231 − `232 + `241 − `242 .

(7.22)

Imposing the conditions that the matrices in (7.11), (7.13), (7.15), (7.17), (7.19),

and (7.21) should vanish yields solutions to these equations

`32 = ±1 , `43 = ±1 , (7.23)
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and all other `-parameters vanish. Up to the field redefinitions F → −F and G→ −G, we

have recovered the off-shell chiral adinkra network L-matrices and R-matrices by starting

from the on-shell chiral adinkra network L-matrices and R-matrices. The solution in (7.23)

also can be shown to satisfy the conditions in (7.7) and (7.8).

7.2 On-shell vector valise matrix deformation

Now we repeat the analysis of the previous subsection but switching our attention to the

vector supermultiplet adinkra valise matrices. We introduce a set of deformation to the on-

shell L-matrices and R-matrices shown in (5.11) and (5.12) by introducing the deforming

parameters `4 1, `4 2, `4 3, and `4 4 to augment the on-shell matrices according to

(L1) i k̂ =


0 1 0 0

0 0 0 − 1

1 0 0 0

`4 1 `4 2 `4 3 `4 4

 , (L2) i k̂ =


1 0 0 0

0 0 1 0

0 − 1 0 0

`4 2 −`4 1 −`4 4 `4 3

 ,

(L3) i k̂ =


0 0 0 1

0 1 0 0

0 0 1 0

−`4 3 −`4 4 `4 1 `4 2

 , (L4) i k̂ =


0 0 1 0

− 1 0 0 0

0 0 0 − 1

`4 4 −`4 3 `4 2 −`4 1

 , (7.24)

(R1) k̂ i =


0 0 1 `4 1

1 0 0 `4 2

0 0 0 `4 3

0 − 1 0 `4 4

 , (R2) k̂ i =


1 0 0 `4 2

0 0 − 1 − `4 1

0 1 0 − `4 4

0 0 0 `4 3

 ,

(R3) k̂ i =


0 0 0 −`4 3

0 1 0 −`4 4

0 0 1 `4 1

1 0 0 `4 2

 , (R4) k̂ i =


0 − 1 0 `4 4

0 ‘0 0 −`4 3

1 0 0 `4 2

0 0 − 1 − `4 1

 . (7.25)

Once more direct calculations show these satisfy (7.5). However, we can also carry out

similar calculations where the R-matrices appearing as the terms farthest to the left in the

matrix multiplications. For these calculations we find

( R1 )ı̂
j ( L2 )j

k̂ + ( R2 )ı̂
j ( L1 )j

k̂ =
2`41`42 −`241 + `242 `42`43 − `41`44 `41`43 + `42`44

−`241 + `242 −2`41`42 −`41`43 − `42`44 `42`43 − `41`44

`42`43 − `41`44 −`41`43 − `42`44 −2`43`44 −1 + `243 − `244

`41`43 + `42`44 `42`43 − `41`44 −1 + `243 − `244 2`43`44

 , (7.26)

( R1 )ı̂
j ( L3 )j

k̂ + ( R3 )ı̂
j ( L1 )j

k̂ =
−2`41`43 −`42`43 − `41`44 1 + `241 − `243 `41`42 − `43`44

−`42`43 − `41`44 −2`42`44 `41`42 − `43`44 `242 − `244

1 + `241 − `243 `41`42 − `43`44 2`41`43 `42`43 + `41`44

`41`42 − `43`44 `242 − `244 `42`43 + `41`44 2`42`44

 , (7.27)
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( R1 )ı̂
j ( L4 )j

k̂ + ( R4 )ı̂
j ( L1 )j

k̂ =
2`41`44 −`41`43 + `42`44 `41`42 + `43`44 −`241 + `244

−`41`43 + `42`44 −2`42`43 1 + `242 − `243 −`41`42 − `43`44

`41`42 + `43`44 1 + `242 − `243 2`42`43 −`41`43 + `42`44

−`241 + `244 −`41`42 − `43`44 −`41`43 + `42`44 −2`41`44

 , (7.28)

( R2 )ı̂
j ( L3 )j

k̂ + ( R3 )ı̂
j ( L2 )j

k̂ =
−2`42`43 `41`43 − `42`44 `41`42 + `43`44 1 + `242 − `243

`41`43 − `42`44 2`41`44 −`241 + `244 −`41`42 − `43`44

`41`42 + `43`44 −`241 + `244 −2`41`44 `41`43 − `42`44

1 + `242 − `243 −`41`42 − `43`44 `41`43 − `42`44 2`42`43

 , (7.29)

( R2 )ı̂
j ( L4 )j

k̂ + ( R4 )ı̂
j ( L2 )j

k̂ =
2`42`44 −`42`43 − `41`44 `242 − `244 −`41`42 + `43`44

−`42`43 − `41`44 2`41`43 −`41`42 + `43`44 1 + `241 − `243

`242 − `244 −`41`42 + `43`44 −2`42`44 `42`43 + `41`44

−`41`42 + `43`44 1 + `241 − `243 `42`43 + `41`44 −2`41`43

 , (7.30)

( R3 )ı̂
j ( L4 )j

k̂ + ( R4 )ı̂
j ( L3 )j

k̂ =
−2`43`44 −1 + `243 − `244 −`42`43 + `41`44 `41`43 + `42`44

−1 + `243 − `244 2`43`44 −`41`43 − `42`44 −`42`43 + `41`44

−`42`43 + `41`44 −`41`43 − `42`44 2`41`42 −`241 + `242

`41`43 + `42`44 −`42`43 + `41`44 −`241 + `242 −2`41`42

 . (7.31)

If we impose the condition in (7.6) we are easily led to the solutions

`4 1 = `4 2 = `4 4 = 0 , `4 3 = ±1 . (7.32)

Up to a sign (which corresponds to the redefinition d → − d) we recover the off-shell

L-matrices and R-matrices of (5.8) and (5.9) for the adinkra network version of vector

supermultiplet. The solution in (7.32) also can be shown to satisfy the conditions in (7.7)

and (7.8).

So once again we see the method of deforming the on-shell matrices by augmentation

involving the `-parameters followed by the imposition of the off-diagonal part of the Garden

Algebra conditions leads from the on-shell to the off-shell versions of the matrices. To

summarize the results of this section, we have shown that one can:

(a.) start with on-shell L-matrices and R-matrices (for the chiral adinkra network (5.5)

and (5.6) or for the vector adinkra network (5.11) and (5.12)),

(b.) use `-parameters to augment the on-shell L-matrices and R-matrices (for the chiral

adinkra network (7.9) and (7.10) or for the vector adinkra network (7.24) and (7.25)),

(c.) impose the Garden Algebra conditions in (7.5) and (7.6), and
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(d.) thereby, up to a set of field redefinitions, derive the off-shell versions of the respective

L-matrices and R-matrices. (for the chiral adinkra network (5.2) and (5.3) or for the

vector adinkra (5.8) and (5.9)).

The `-augmented L-matrices and R-matrices interpolate between the on-shell solutions

(where all ` parameters vanish) and the off-shell ones (where the ` parameters take on

the values shown in (7.23) or (7.32) in the respective cases). For general values of the

`-parameters, the augmented matrices do not satisfy the Garden Algebra.

8 The general cryptographic problem analogy to the adinkra network

auxiliary field problem

In this section, we want to discuss the general matrix problem that adinkra networks

provide as the translation of the off-shell SUSY auxiliary field problem.

Consider a set of matrices of the forms

( LI )i k̂ =



aI
1 1 + `I1 1 aI

1 2 + `I1 2 · · · aI
1 r1

+ `I1 r1 · · · aI
1 4p + `I1 4p

aI
2 1 + `I2 1 aI

2 2 + `I2 2 · · · aI
2 r1

+ `I2 r1 · · · aI
2 4p + `I2 4p

...
...

...
...

...
...

...
...

aI
4p 1 + `I4p 1 a

I
4p 2 + `I4p 2 · · · aI

4p r1
+ `I4p r1 · · · aI

4p 4p + `I4p 4p


, (8.1)

and

( RI )k̂ i =



bI1 1 + ̂̀I1 1 bI1 2 + ̂̀I1 2 · · · bI1 r1 + ̂̀I1 r1 · · · bI1 4p + ̂̀I1 4p

bI2 1 + ̂̀I2 1 bI2 2 + ̂̀I2 2 · · · bI2 r1 + ̂̀I2 r1 · · · bI2 4p + ̂̀I2 4p
...

...
...

...
...

...
...

...

bI4p 1 + ̂̀I4p 1 b
I
4p 2 + ̂̀I4p 2 · · · bI4p r1 + ̂̀I4p r1 · · · bI4p 4p + ̂̀I4p 4p


, (8.2)

with I = 1 . . . N . In writing these expressions the integer p is assumed to be some fixed

counting number. The integers r1 to r4p are allowed to range from 0 to 4p−1 and similarly

the integers s1 to s4p are allowed to range from 0 to 4p − 1. We also assume that the

numerical values of all the entries in the matrices are such that they satisfy the constraints

in satisfy the conditions in (7.5) - (7.8).

Next we imagine there is a sender who wishes to send an encrypted version of these to

a receiver. The method of encryption is very simple. The encrypted versions transmitted

in the open have all their `-parameters and ̂̀-parameters set to zero. From the examples

we have worked out previously, we know in some cases (with a relatively small amount of
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effort) the receiver can set up calculations to reconstruct the encrypted matrices. What

the examples do not show us is how general is this capability. We assert understanding

this problem in its generality is equivalent to solving the adinkra network version of the

auxiliary field problem. As cryptography is a very well developed topic, it may well be

that this alternate formulation of the problem can take advantage of some of this pre-

existing knowledge.

9 Summary and conclusion

The most important result of this work is the demonstration that given the information

of an on-shell adinkra network it is possible by use of the Garden Algebra to derive a

corresponding off-shell structure in which the on-shell one is embedded.

The method we have introduced involves the introduction of a space of real parameters,

denoted by `’s, which are used to construct matrices that interpolate from a description of

an on-shell adinkra network to an off-shell one. There may be an interesting mathematical

question to pursue here. If we think of the `’s as the coordinates of some space, then

the solution to the “Garden Algebra” problem for augmented on-shell L-matrices and R-

matirces may be regarded as the search for the loci of points which simultaneously solve the

conditions arising from the “Garden Algebra.” This offers the possibility of attacking such

problems from the point of view of real algebraic geometry. Within the DFGHILM [29]

collaboration, but in unpublished private discussions, it has long been recognized that for

some theories (with more than four colors), there exist the possibility that there not only

exist isolated points that satisfy the “Garden Algebra” conditions, but entire surfaces.

Via adinkras and their adjacency matrices, the off-shell auxiliary field problem of

supersymmetrical systems has been “translated” into more precise mathematical questions.

The statement of these problems can be cast in the following form. Begin with a set of N
dL × dR set of L-matrices and a set of N dR × dL set of R-matrices. By the augmentation

process described in the last section, these can be enlarged to be 4p × 4p matrices for some

integer p. Given an arbitrary set of the initial dL × dR and dR × dL matrices, is it possible

to find augmentations that satisfy the conditions in (7.5) and (7.6)?

We have two conjectures to make along these lines.

Conjecture # 1. In the work of [23], the L-matrices and R-matrices of a formulation of

the 4D, N = 1 double tensor adinkra network were given and this system does not possess

an augmentation satisfying (7.5) and (7.6) in an irreducible manner.

Conjecture # 2. In the work of [25], the L-matrices and R-matrices of a formulation

of the 4D, N = 4 Maxwell adinkra network were given and this system possesses an

augmentation satisfying (7.5) and (7.6) in an irreducible manner.

With this work, we provided a proof of concept that the (R), (AD), and (I) steps are

all implementable in the context of supersymmetrical field theories. However, even if one

is successful in all of these, there remains a challenge that caution bids us to note. The (O)

operation, denoting the dimensional enhancement of the adinkra network world results,
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must then be converted first back into 0-brane world results and hence dimensionally

enhanced back to a full Minkowskian space construction and this is not yet guaranteed to

us. It could be that there exists some obstruction to carrying out this step even though all

the other steps of the RADIO proposal are successful.

Though we are mindful of this possibility, we are also optimistic as in recent times,

we have developed an understanding and powerful tools (“Adinkra/Gamma Matrix Equa-

tions,” “Coxeter Group Orbit/Hodge Duality Relations,” and “Holoraumy”) [16, 17, 24, 30]

which strongly suggest the existence of invariants that can be used to start from an adinkra

network world description and recover a corresponding 0-brane world description. Once

this is done, we believe the step of dimensional enhancement or (O) “oxidation” should be

straightforward.

“An error does not become truth by reason of multiplied propagation, nor does

truth become error because nobody sees it. Truth stands, even if there be no

public support. It is self sustained.” — M. K. Ghandi
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