2,464 research outputs found

    Pi Charge Distribution from Molecular Topology and Pi Orbital Electronegativity

    Get PDF
    The automatic and computer-aided prediction of reactivity by means of a few basic atomic parameters is achieved. Considering that only the topology of a molecule is required for the computation it is evident that PEOE (partial equalization of orbital electronegativity) and SD-POE (sigma dependent POE) models proposed by the authors together establish a valid alternative to the presently available, time consuming quantum mechanical procedures. Furthermore, this approach gives a new insight into the interaction between a and it electrons which seems worthy of further investigation. In addition, we have revived the concept of orbital electronegativity, especially in the case of the Jt electrons for which no calculation based on POE (pi orbital electronegativy) has, up to now, ever been performed

    Achievement and Integration of Students with Special Needs (SEN) in the Fifth Grade

    Get PDF
    In Styria 77.3% of all students with special needs are educated in integrated classrooms. Currently, it is not known much either about the school performance nor the active class participation of these students. This study examined 230 fifth grade students – 43 with and 187 students without special educational needs (SEN). Moreover, it is important to acknowledge that the available data for this study represents the first wave of larger longitudinal study. The school performance of the students with SEN ranged one standard deviation below the level of the students without SEN. All students felt emotionally well integrated in the school settings, but the differences in the degree of social integration were evident. In fact, the students with SEN mentioned that they got along well with their classmates less frequently than the students without SEN

    Pi Charge Distribution from Molecular Topology and Pi Orbital Electronegativity

    Get PDF
    The automatic and computer-aided prediction of reactivity by means of a few basic atomic parameters is achieved. Considering that only the topology of a molecule is required for the computation it is evident that PEOE (partial equalization of orbital electronegativity) and SD-POE (sigma dependent POE) models proposed by the authors together establish a valid alternative to the presently available, time consuming quantum mechanical procedures. Furthermore, this approach gives a new insight into the interaction between a and it electrons which seems worthy of further investigation. In addition, we have revived the concept of orbital electronegativity, especially in the case of the Jt electrons for which no calculation based on POE (pi orbital electronegativy) has, up to now, ever been performed

    What is the benefit of ceilometers for aerosol remote sensing? An answer from EARLINET

    Get PDF
    With the establishment of ceilometer networks by national weather services, a discussion commenced to which extent these simple backscatter lidars can be used for aerosol research. Though primarily designed for the detection of clouds it was shown that at least observations of the vertical structure of the boundary layer might be possible. However, an assessment of the potential of ceilometers for the quantitative retrieval of aerosol properties is still missing. In this paper we discuss different retrieval methods to derive the aerosol backscatter coefficient beta(p),with special focus on the calibration of the ceilometers. Different options based on forward and backward integration methods are compared with respect to their accuracy and applicability. It is shown that advanced lidar systems such as those being operated in the framework of the European Aerosol Research Lidar Network (EARLINET) are excellent tools for the calibration, and thus beta(p) retrievals based on forward integration can readily be implemented and used for real-time applications. Furthermore, we discuss uncertainties introduced by incomplete overlap, the unknown lidar ratio, and water vapor absorption. The latter is relevant for the very large number of ceilometers operating in the spectral range around lambda = 905-910 nm. The accuracy of the retrieved beta(p) mainly depends on the accuracy of the calibration and the long-term stability of the ceilometer. Under favorable conditions, a relative error of beta(p) on the order of 10% seems feasible. In the case of water vapor absorption, corrections assuming a realistic water vapor distribution and laser spectrum are indispensable;otherwise errors on the order of 20% could occur. From case studies it is shown that ceilometers can be used for the reliable detection of elevated aerosol layers below 5 km, and can contribute to the validation of chemistry transport models, e. g.,the height of the boundary layer. However, the exploitation of ceilometer measurements is still in its infancy, so more studies are urgently needed to consolidate the present state of knowledge, which is based on a limited number of case studies

    Volcanic ash from Iceland over Munich: mass concentration retrieved from ground-based remote sensing measurements

    Get PDF
    Volcanic ash plumes, emitted by the Eyjafjallajökull volcano (Iceland) in spring 2010, were observed by the lidar systems MULIS and POLIS in Maisach (near Munich, Germany), and by a CIMEL Sun photometer and a JenOptik ceilometer in Munich. We retrieve mass concentrations of volcanic ash from the lidar measurements; spectral optical properties, i.e. extinction coefficients, backscatter coefficients, and linear depolarization ratios, are used as input for an inversion. The inversion algorithm searches for model aerosol ensembles with optical properties that agree with the measured values within their uncertainty ranges. The non-sphericity of ash particles is considered by assuming spheroids. Optical particle properties are calculated using the T-matrix method supplemented by the geometric optics approach. The lidar inversion is applied to observations of the pure volcanic ash plume in the morning of 17 April 2010. We find 1.45 g m−2 for the ratio between the mass concentration and the extinction coefficient at λ = 532 nm, assuming an ash density of 2.6 g cm−3. The uncertainty range for this ratio is from 0.87 g m−2 to 2.32 g m−2. At the peak of the ash concentration over Maisach the extinction coefficient at λ = 532 nm was 0.75 km−1 (1-h-average), which corresponds to a maximum mass concentration of 1.1 mg m−3 (0.65 to 1.8 mg m−3). Model calculations show that particle backscatter at our lidar wavelengths (λ ≤ 1064 nm), and thus the lidar retrieval, is hardly sensitive to large particles (r ≳ 3 μm); large particles, however, may contain significant amounts of mass. Therefore, as an independent cross check of the lidar retrieval and to investigate the presence of large particles in more detail, we model ratios of sky radiances in the aureole of the Sun and compare them to measurements of the CIMEL. These ratios are sensitive to particles up to r ≈ 10 μm. This approach confirms the mass concentrations from the lidar retrieval. We conclude that synergistic utilization of high quality lidar and Sun photometer data, in combination with realistic aerosol models, is recommended for improving ash mass concentration retrievals

    Airborne observations of the Eyjafjalla volcano ash cloud over Europe during air space closure in April and May 2010

    Get PDF
    © Author(s) 2011. This work is distributed under the Creative Commons Attribution 3.0 LicenseAirborne lidar and in-situ measurements of aerosols and trace gases were performed in volcanic ash plumes over Europe between Southern Germany and Iceland with the Falcon aircraft during the eruption period of the Eyjafjalla1 volcano between 19 April and 18 May 2010. Flight planning and measurement analyses were supported by a refined Meteosat ash product and trajectory model analysis. The volcanic ash plume was observed with lidar directly over the volcano and up to a distance of 2700 km downwind, and up to 120 h plume ages. Aged ash layers were between a few 100 m to 3 km deep, occurred between 1 and 7 km altitude, and were typically 100 to 300 km wide. Particles collected by impactors had diameters up to 20 μm diameter, with size and age dependent composition. Ash mass concentrations were derived from optical particle spectrometers for a particle density of 2.6 g cm-3 and various values of the refractive index (RI, real part: 1.59; 3 values for the imaginary part: 0, 0.004 and 0.008). The mass concentrations, effective diameters and related optical properties were compared with ground-based lidar observations. Theoretical considerations of particle sedimentation constrain the particle diameters to those obtained for the lower RI values. The ash mass concentration results have an uncertainty of a factor of two. The maximum ash mass concentration encountered during the 17 flights with 34 ash plume penetrations was below 1 mg m-3. The Falcon flew in ash clouds up to about 0.8 mg m-3 for a few minutes and in an ash cloud with approximately 0.2 mg -3 mean-concentration for about one hour without engine damage. The ash plumes were rather dry and correlated with considerable CO and SO2 increases and O3 decreases. To first order, ash concentration and SO2 mixing ratio in the plumes decreased by a factor of two within less than a day. In fresh plumes, the SO2 and CO concentration increases were correlated with the ash mass concentration. The ash plumes were often visible slantwise as faint dark layers, even for concentrations below 0.1 mg m-3. The large abundance of volatile Aitken mode particles suggests previous nucleation of sulfuric acid droplets. The effective diameters range between 0.2 and 3 μm with considerable surface and volume contributions from the Aitken and coarse mode aerosol, respectively. The distal ash mass flux on 2 May was of the order of 500 (240-1600) kgs -1. The volcano induced about 10 (2.5-50) Tg of distal ash mass and about 3 (0.6-23) Tg of SO2 during the whole eruption period. The results of the Falcon flights were used to support the responsible agencies in their decisions concerning air traffic in the presence of volcanic ash.Peer reviewe
    corecore