1,014 research outputs found

    Lunar science prior to Apollo 11

    Get PDF
    Evolutional aspects and geological interpretations in lunar scienc

    Gel transitions in colloidal suspensions

    Full text link
    The idealized mode coupling theory (MCT) is applied to colloidal systems interacting via short-range attractive interactions of Yukawa form. At low temperatures MCT predicts a slowing down of the local dynamics and ergodicity breaking transitions. The nonergodicity transitions share many features with the colloidal gel transition, and are proposed to be the source of gelation in colloidal systems. Previous calculations of the phase diagram are complemented with additional data for shorter ranges of the attractive interaction, showing that the path of the nonergodicity transition line is then unimpeded by the gas-liquid critical curve at low temperatures. Particular attention is given to the critical nonergodicity parameters, motivated by recent experimental measurements. An asymptotic model is developed, valid for dilute systems of spheres interacting via strong short-range attractions, and is shown to capture all aspects of the low temperature MCT nonergodicity transitions.Comment: 12 pages, LaTeX, 5 eps figures, uses ioplppt.sty, to appear in J. Phys.: Condens. Matte

    Critical phenomena in colloid-polymer mixtures: interfacial tension, order parameter, susceptibility and coexistence diameter

    Full text link
    The critical behavior of a model colloid-polymer mixture, the so-called AO model, is studied using computer simulations and finite size scaling techniques. Investigated are the interfacial tension, the order parameter, the susceptibility and the coexistence diameter. Our results clearly show that the interfacial tension vanishes at the critical point with exponent 2\nu ~ 1.26. This is in good agreement with the 3D Ising exponent. Also calculated are critical amplitude ratios, which are shown to be compatible with the corresponding 3D Ising values. We additionally identify a number of subtleties that are encountered when finite size scaling is applied to the AO model. In particular, we find that the finite size extrapolation of the interfacial tension is most consistent when logarithmic size dependences are ignored. This finding is in agreement with the work of Berg et al.[Phys. Rev. B, V47 P497 (1993)]Comment: 13 pages, 16 figure

    Stability of Colloidal Quasicrystals

    Full text link
    Freezing of charge-stabilized colloidal suspensions and relative stabilities of crystals and quasicrystals are studied using thermodynamic perturbation theory. Macroion interactions are modelled by effective pair potentials combining electrostatic repulsion with polymer-depletion or van der Waals attraction. Comparing free energies -- counterion terms included -- for elementary crystals and rational approximants to icosahedral quasicrystals, parameters are identified for which one-component quasicrystals are stabilized by a compromise between packing entropy and cohesive energy.Comment: 6 pages, 4 figure

    Lithium Phthalocyanine: A Probe for Electron Paramagnetic Resonance Oximetry in Viable Biological Systems.

    Get PDF
    Lithium phthalocyanine (LiPc) is a prototype of another generation of synthetic, metallic-organic, paramagnetic crystallites that appear very useful for in vitro and in vivo electron paramagnetic resonance oximetry. The peak-to-peak line width of the electron paramagnetic resonance spectrum of LiPc is a linear function of the partial pressure of oxygen (pO2); this linear relation is independent of the medium surrounding the LiPc. It has an extremely exchange-narrowed spectrum (peak-to-peak line width = 14 mG in the absence of O2). Physicochemically LiPc is very stable; its response to pO2 does not change with conditions and environments (e.g., pH, temperature, redox conditions) likely to occur in viable biological systems. These characteristics provide the sensitivity, accuracy, and range to measure physiologically and pathologically pertinent O2 tensions (0.1-50 mmHg; 1 mmHg = 133 Pa). The application of LiPc in biological systems is demonstrated in measurements of pO2 in vivo in the heart, brain, and kidney of rats

    High precision measurement of the associated strangeness production in proton proton interactions

    Full text link
    A new high precision measurement of the reaction pp -> pK+Lambda at a beam momentum of 2.95 GeV/c with more than 200,000 analyzed events allows a detailed analysis of differential observables and their inter-dependencies. Correlations of the angular distributions with momenta are examined. The invariant mass distributions are compared for different regions in the Dalitz plots. The cusp structure at the N Sigma threshold is described with the Flatt\'e formalism and its variation in the Dalitz plot is analyzed.Comment: accepted for publication in Eur. Phys. J.

    First Model-Independent Measurement of the Spin Triplet pΛp\Lambda Scattering Length from Final State Interaction in the pppK+Λ\vec{p}p \rightarrow pK^{+}\Lambda Reaction

    Full text link
    The pppK+Λ\vec{p}p \rightarrow pK^{+}\Lambda reaction has been measured with the COSY-TOF detector at a beam momentum of 2.7GeV/c2.7\,\mathrm{GeV}/c. The polarized proton beam enables the measurement of the beam analyzing power by the asymmetry of the produced kaon (ANKA_N^{K}). This observable allows the pΛp\Lambda spin triplet scattering length to be extracted for the first time model independently from the final-state interaction in the reaction. The obtained value is at=(2.551.39+0.72stat.±0.6syst.±0.3theo.)fma_{t} = (-2.55 ^{+0.72}_{-1.39} {}_{\textrm{stat.}} \pm 0.6_{\textrm{syst.}} \pm 0.3_{\textrm{theo.}})\mathrm{fm}. This value is compatible with theoretical predictions and results from model-dependent analyses.Comment: Revised version as accepted for publication in PR

    Effective Interactions and Volume Energies in Charge-Stabilized Colloidal Suspensions

    Full text link
    Charge-stabilized colloidal suspensions can be conveniently described by formally reducing the macroion-microion mixture to an equivalent one-component system of pseudo-particles. Within this scheme, the utility of a linear response approximation for deriving effective interparticle interactions has been demonstrated [M. J. Grimson and M. Silbert, Mol. Phys. 74, 397 (1991)]. Here the response approach is extended to suspensions of finite-sized macroions and used to derive explicit expressions for (1) an effective electrostatic pair interaction between pseudo-macroions and (2) an associated volume energy that contributes to the total free energy. The derivation recovers precisely the form of the DLVO screened-Coulomb effective pair interaction for spherical macroions and makes manifest the important influence of the volume energy on thermodynamic properties of deionized suspensions. Excluded volume corrections are implicitly incorporated through a natural modification of the inverse screening length. By including nonlinear response of counterions to macroions, the theory may be generalized to systematically investigate effective many-body interactions.Comment: 13 pages (J. Phys.: Condensed Matter, in press

    Interfacial tension and nucleation in mixtures of colloids and long ideal polymer coils

    Full text link
    Mixtures of ideal polymers with hard spheres whose diameters are smaller than the radius of gyration of the polymer, exhibit extensive immiscibility. The interfacial tension between demixed phases of these mixtures is estimated, as is the barrier to nucleation. The barrier is found to scale linearly with the radius of the polymer, causing it to become large for large polymers. Thus for large polymers nucleation is suppressed and phase separation proceeds via spinodal decomposition, as it does in polymer blends.Comment: 4 pages (v2 includes discussion of the scaling of the interfacial tension along the coexistence curve and its relation to the Ginzburg criterion

    Nonergodicity transitions in colloidal suspensions with attractive interactions

    Full text link
    The colloidal gel and glass transitions are investigated using the idealized mode coupling theory (MCT) for model systems characterized by short-range attractive interactions. Results are presented for the adhesive hard sphere and hard core attractive Yukawa systems. According to MCT, the former system shows a critical glass transition concentration that increases significantly with introduction of a weak attraction. For the latter attractive Yukawa system, MCT predicts low temperature nonergodic states that extend to the critical and subcritical region. Several features of the MCT nonergodicity transition in this system agree qualitatively with experimental observations on the colloidal gel transition, suggesting that the gel transition is caused by a low temperature extension of the glass transition. The range of the attraction is shown to govern the way the glass transition line traverses the phase diagram relative to the critical point, analogous to findings for the fluid-solid freezing transition.Comment: 11 pages, 7 figures; to be published in Phys. Rev. E (1 May 1999
    corecore