34 research outputs found

    Chiral Perturbation Theory and the f2(1270) resonance

    Get PDF
    Within Chiral Perturbation Theory, we study elastic pion scattering in the I=0, J=2, channel, whose main features are the f2(1270) resonance and the vanishing of the lowest order. By means of a chiral model that includes an explicit resonance coupled to pions, we describe the data and calculate the resonance contribution to the O(p^4) and O(p^6) chiral parameters. We also generalize the Inverse Amplitude Method to higher orders, which allows us to study channels with vanishing lowest order. In particular, we apply it to the I=0,J=2 case, finding a good description of the f2(1270) resonance, as a pole in the second Riemann sheet.Comment: 4 pages,1 figur

    Impact of the finite volume effects on the chiral behavior of fK and BK

    Full text link
    We discuss the finite volume corrections to fK and BK by using the one-loop chiral perturbation theory in full, quenched, and partially quenched QCD. We show that the finite volume corrections to these quantities dominate the physical (infinite volume) chiral logarithms.Comment: 16 pages, 3 figures [published version

    Two-loop representations of low-energy pion form factors and pi-pi scattering phases in the presence of isospin breaking

    Full text link
    Dispersive representations of the pi-pi scattering amplitudes and pion form factors, valid at two-loop accuracy in the low-energy expansion, are constructed in the presence of isospin-breaking effects induced by the difference between the charged and neutral pion masses. Analytical expressions for the corresponding phases of the scalar and vector pion form factors are computed. It is shown that each of these phases consists of the sum of a "universal" part and a form-factor dependent contribution. The first one is entirely determined in terms of the pi-pi scattering amplitudes alone, and reduces to the phase satisfying Watson's theorem in the isospin limit. The second one can be sizeable, although it vanishes in the same limit. The dependence of these isospin corrections with respect to the parameters of the subthreshold expansion of the pi-pi amplitude is studied, and an equivalent representation in terms of the S-wave scattering lengths is also briefly presented and discussed. In addition, partially analytical expressions for the two-loop form factors and pi-pi scattering amplitudes in the presence of isospin breaking are provided.Comment: 57 pages, 12 figure

    Spontaneous Magnetization of the O(3) Ferromagnet at Low Temperatures

    Full text link
    We investigate the low-temperature behavior of ferromagnets with a spontaneously broken symmetry O(3) \to O(2). The analysis is performed within the perspective of nonrelativistic effective Lagrangians, where the dynamics of the system is formulated in terms of Goldstone bosons. Unlike in a Lorentz-invariant framework (chiral perturbation theory), where loop graphs are suppressed by two powers of momentum, loops involving ferromagnetic spin waves are suppressed by three momentum powers. The leading coefficients of the low-temperature expansion for the partition function are calculated up to order p10p^{10}. In agreement with Dyson's pioneering microscopic analysis of the cubic ferromagnet, we find that, in the spontaneous magnetization, the magnon-magnon interaction starts manifesting itself only at order T4T^4. The striking difference with respect to the low-temperature properties of the O(3) antiferromagnet is discussed from a unified point of view, relying on the effective Lagrangian technique.Comment: 23 pages, 4 figure

    Low-energy QCD: Chiral coefficients and the quark-quark interaction

    Full text link
    A detailed investigation of the low-energy chiral expansion is presented within a model truncation of QCD. The truncation allows for a phenomenological description of the quark-quark interaction in a framework which maintains the global symmetries of QCD and permits a 1/Nc1/N_c expansion. The model dependence of the chiral coefficients is tested for several forms of the quark-quark interaction by varying the form of the running coupling, α(q2)\alpha (q^2), in the infrared region. The pattern in the coefficients that arises at tree level is consistent with large NcN_c QCD, and is related to the model truncation.Comment: 28 pages, Latex, 6 postscript figures available on request to [email protected]

    On different lagrangian formalisms for vector resonances within chiral perturbation theory

    Get PDF
    We study the relation of vector Proca field formalism and antisymmetric tensor field formalism for spin-one resonances in the context of the large N_C inspired chiral resonance Lagrangian systematically up to the order O(p6) and give a transparent prescription for the transition from vector to antisymmetric tensor Lagrangian and vice versa. We also discuss the possibility to describe the spin-one resonances using an alternative "mixed" first order formalism, which includes both types of fields simultaneously, and compare this one with the former two. We also briefly comment on the compatibility of the above lagrangian formalisms with the high-energy constraints for concrete VVP correlator.Comment: 34 pages, 3 figure

    Chiral unitary approach to S-wave meson baryon scattering in the strangeness S=0 sector

    Get PDF
    We study the S-wave interaction of mesons with baryons in the strangeness S=0 sector in a coupled channel unitary approach. The basic dynamics is drawn from the lowest order meson baryon chiral Lagrangians. Small modifications inspired by models with explicit vector meson exchange in the t-channel are also considered. In addition the pi pi N channel is included and shown to have an important repercussion in the results, particularly in the isospin 3/2 sector.Comment: 23 pages, LaTeX, 21 figure

    Baryon polarization in low-energy unpolarized meson-baryon scattering

    Full text link
    We compute the polarization of the final-state baryon, in its rest frame, in low-energy meson--baryon scattering with unpolarized initial state, in Unitarized BChPT. Free parameters are determined by fitting total and differential cross-section data (and spin-asymmetry or polarization data if available) for pKpK^-, pK+pK^+ and pπ+p\pi^+ scattering. We also compare our results with those of leading-order BChPT

    Chiral dynamics of p-wave in K^- p and coupled states

    Get PDF
    We perform an evaluation of the p-wave amplitudes of meson-baryon scattering in the strangeness S=-1 sector starting from the lowest order chiral Lagrangians and introducing explicitly the Sigma^* field with couplings to the meson-baryon states obtained using SU(6) symmetry. The N/D method of unitarization is used, equivalent, in practice, to the use of the Bethe-Salpeter equation with a cut-off. The procedure leaves no freedom for the p-waves once the s-waves are fixed and thus one obtains genuine predictions for the p-wave scattering amplitudes, which are in good agreement with experimental results for differential cross sections, as well as for the width and partial decay widths of the Sigma^*(1385).Comment: LaTeX, 18 pages, 6 figure

    QCD sum rule for nucleon in nuclear matter

    Full text link
    We consider the two-point function of nucleon current in nuclear matter and write a QCD sum rule to analyse the residue of the nucleon pole as a function of nuclear density. The nucleon self-energy needed for the sum rule is taken as input from calculations using phenomenological NN potential. Our result shows a decrease in the residue with increasing nuclear density, as is known to be the case with similar quantities
    corecore