1,243 research outputs found

    Multifrequency study of a new Hybrid Morphology Radio Source

    Get PDF
    Hybrid Morphology Radio Sources (HyMoRS) are a class of radio galaxies having the lobe morphology of a Fanaroff-Riley (FR) type I on one side of the active nucleus and of a FR type II on the other. The origin of the different morphologies between FR I and FR II sources has been widely discussed in the past 40 years, and HyMoRS may be the best way to understand whether this dichotomy is related to the intrinsic nature of the source and/or to its environment. However, these sources are extremely rare (<1% of radio galaxies) and only for a few of them a detailed radio study, that goes beyond the morphological classification, has been conducted. In this paper we report the discovery of one new HyMoRS; we present X-ray and multi-frequency radio observations. We discuss the source morphological, spectral and polarisation properties and confirm that HyMoRS are intrinsically bimodal with respect to these observational characteristics. We notice that HyMoRS classification based just on morphological properties of the source is hazardous.Comment: 8 pages, 9 figures, accepted MNRA

    LLAGN and jet-scaling probed with the EVN

    Full text link
    Accreting black holes on all mass scales (from stellar to supermassive) appear to follow a nonlinear relation between X-ray luminosity, radio luminosity and BH mass, indicating that similar physical processes drive the central engines in X-ray binaries and active galactic nuclei (AGN). However, in recent years an increasing number of BH systems have been identified that do not fit into this scheme. These outliers may be the key to understand how BH systems are powered by accretion. Here we present results from EVN observations of a sample of low-luminosity AGN (LLAGN) with known mass that have unusually high radio powers when compared with their X-ray luminosity.Comment: Presented at the 11th EVN Symposium, Bordeaux, France, 2012 October 9-12. Six pages, including a figure and a table. Final, accepted versio

    Radio Observations of HD80606 Near Planetary Periastron: II. LOFAR Low Band Antenna Observations at 30-78 MHz

    Full text link
    All the giant planets in the solar system generate radio emission via the electron cyclotron maser instability, most notably giving rise to Jupiter's decametric emissions. An interaction with the solar wind is at least partially responsible for all of these solar system electron cyclotron masers. HD80606b is a giant planet with a highly eccentric orbit, leading to predictions that its radio emission may be enhanced substantially near periastron. This paper reports observations with the Low Frequency Array (LOFAR) of HD80606b near its periastron in an effort to detect radio emissions generated by an electron cyclotron maser instability in the planet's magnetosphere. The reported observations are at frequencies between 30 MHz and 78 MHz, and they are distinguished from most previous radio observations of extrasolar planets by two factors: (i) They are at frequencies near 50 MHz, much closer to the frequencies at which Jupiter emits (< 40 MHz) and lower than most previously reported observations of extrasolar planets; and (ii) Sensitivities of approximately a few millijanskys have been achieved, an order of magnitude or more below nearly all previous extrasolar planet observations below 100 MHz. We do not detect any radio emissions from HD80606b and use these observations to place new constraints on its radio luminosity. We also revisit whether the observations were conducted at a time when it was super-Alfvenic relative to the host star's stellar wind, which experience from the solar system illustrates is a state in which an electron cyclotron maser emission can be sustained in a planet's magnetic polar regions.Comment: 7 pages, 2 figures, accepted A&

    Abell 1033: birth of a radio phoenix

    Full text link
    Extended steep-spectrum radio emission in a galaxy cluster is usually associated with a recent merger. However, given the complex scenario of galaxy cluster mergers, many of the discovered sources hardly fit into the strict boundaries of a precise taxonomy. This is especially true for radio phoenixes that do not have very well defined observational criteria. Radio phoenixes are aged radio galaxy lobes whose emission is reactivated by compression or other mechanisms. Here, we present the detection of a radio phoenix close to the moment of its formation. The source is located in Abell 1033, a peculiar galaxy cluster which underwent a recent merger. To support our claim, we present unpublished Westerbork Synthesis Radio Telescope and Chandra observations together with archival data from the Very Large Array and the Sloan Digital Sky Survey. We discover the presence of two sub-clusters displaced along the N-S direction. The two sub-clusters probably underwent a recent merger which is the cause of a moderately perturbed X-ray brightness distribution. A steep-spectrum extended radio source very close to an AGN is proposed to be a newly born radio phoenix: the AGN lobes have been displaced/compressed by shocks formed during the merger event. This scenario explains the source location, morphology, spectral index, and brightness. Finally, we show evidence of a density discontinuity close to the radio phoenix and discuss the consequences of its presence.Comment: accepted MNRA

    Discovery of the supernova remnant G351.0-5.4

    Full text link
    Context. While searching the NRAO VLA Sky Survey (NVSS) for diffuse radio emission, we have serendipitously discovered extended radio emission close to the Galactic plane. The radio morphology suggests the presence of a previously unknown Galactic supernova remnant. An unclassified {\gamma}-ray source detected by EGRET (3EG J1744-3934) is present in the same location and may stem from the interaction between high-speed particles escaping the remnant and the surrounding interstellar medium. Aims. Our aim is to confirm the presence of a previously unknown supernova remnant and to determine a possible association with the {\gamma}-ray emission 3EG J1744-3934. Methods. We have conducted optical and radio follow-ups of the target using the Dark Energy Camera (DECam) on the Blanco telescope at Cerro Tololo Inter-American Observatory (CTIO) and the Giant Meterwave Radio Telescope (GMRT). We then combined these data with archival radio and {\gamma}-ray observations. Results. While we detected the extended emission in four different radio bands (325, 1400, 2417, and 4850 MHz), no optical counterpart has been identified. Given its morphology and brightness, it is likely that the radio emission is caused by an old supernova remnant no longer visible in the optical band. Although an unclassified EGRET source is co-located with the supernova remnant, Fermi-LAT data do not show a significant {\gamma}-ray excess that is correlated with the radio emission. However, in the radial distribution of the {\gamma}-ray events, a spatially extended feature is related with SNR at a confidence level 1.5\sim 1.5 {\sigma}. Conclusions. We classify the newly discovered extended emission in the radio band as the old remnant of a previously unknown Galactic supernova: SNR G351.0-5.4.Comment: 6 pages, 6 figures, accepted A&

    The effect of the ionosphere on ultra-low-frequency radio-interferometric observations

    Get PDF
    Context. The ionosphere is the main driver of a series of systematic effects that limit our ability to explore the low-frequency (&lt;1 GHz) sky with radio interferometers. Its effects become increasingly important towards lower frequencies and are particularly hard to calibrate in the low signal-to-noise ratio (S/N) regime in which low-frequency telescopes operate. Aims. In this paper we characterise and quantify the effect of ionospheric-induced systematic errors on astronomical interferometric radio observations at ultra-low frequencies (&lt;100 MHz). We also provide guidelines for observations and data reduction at these frequencies with the LOw Frequency ARray (LOFAR) and future instruments such as the Square Kilometre Array (SKA). Methods. We derive the expected systematic error induced by the ionosphere. We compare our predictions with data from the Low Band Antenna (LBA) system of LOFAR. Results. We show that we can isolate the ionospheric effect in LOFAR LBA data and that our results are compatible with satellite measurements, providing an independent way to measure the ionospheric total electron content (TEC). We show how the ionosphere also corrupts the correlated amplitudes through scintillations. We report values of the ionospheric structure function in line with the literature. Conclusions. The systematic errors on the phases of LOFAR LBA data can be accurately modelled as a sum of four effects (clock, ionosphere first, second, and third order). This greatly reduces the number of required calibration parameters, and therefore enables new efficient calibration strategies

    Radio galaxies in galaxy groups: Kinematics, scaling relations, and AGN feedback

    Get PDF
    We investigate the kinematic properties of a large (N = 998) sample of COSMOS spectroscopic galaxy members distributed among 79 groups. We identify the Brightest Group Galaxies (BGGs) and cross-match our data with the VLA-COSMOS Deep survey at 1.4 GHz, classifying our parent sample into radio/non-radio BGGs and radio/non-radio satellites. The radio luminosity distribution spans from LR2×1021L_R\sim 2\times 10^{21} W Hz1^{-1} to LR3×1025L_R\sim 3\times 10^{25} W Hz1^{-1}. A phase-space analysis, performed by comparing the velocity ratio (line-of-sight velocity divided by the group velocity dispersion) with the galaxy-group centre offset, reveals that BGGs (radio and non-radio) are mostly (\sim80 per cent) ancient infallers. Furthermore, the strongest (LR>1023L_R\gt 10^{23} W Hz1^{-1}) radio galaxies are always found within 0.2RvirR_{\rm vir} from the group centre. Comparing our samples with HORIZON-AGN, we find that the velocities and offsets of simulated galaxies are more similar to radio BGGs than to non-radio BGGs, albeit statistical tests still highlight significant differences between simulated and real objects. We find that radio BGGs are more likely to be hosted in high-mass groups. Finally, we observe correlations between the powers of BGG radio galaxies and the X-ray temperatures, TxT_{\rm x}, and X-ray luminosities, LxL_{\rm x}, of the host groups. This supports the existence of a link between the intragroup medium and the central radio source. The occurrence of powerful radio galaxies at group centres can be explained by Chaotic Cold Accretion, as the AGN can feed from both the galactic and intragroup condensation, leading to the observed positive LRTxL_{\rm R}-T_{\rm x} correlation

    Radio Galaxy Zoo: Cosmological Alignment of Radio Sources

    Get PDF
    We study the mutual alignment of radio sources within two surveys, FIRST and TGSS. This is done by producing two position angle catalogues containing the preferential directions of respectively 3005930\,059 and 1167411\,674 extended sources distributed over more than 70007\,000 and 1700017\,000 square degrees. The identification of the sources in the FIRST sample was performed in advance by volunteers of the Radio Galaxy Zoo project, while for the TGSS sample it is the result of an automated process presented here. After taking into account systematic effects, marginal evidence of a local alignment on scales smaller than 2.5deg2.5\deg is found in the FIRST sample. The probability of this happening by chance is found to be less than 22 per cent. Further study suggests that on scales up to 1.5deg1.5\deg the alignment is maximal. For one third of the sources, the Radio Galaxy Zoo volunteers identified an optical counterpart. Assuming a flat Λ\LambdaCDM cosmology with Ωm=0.31,ΩΛ=0.69\Omega_m = 0.31, \Omega_\Lambda = 0.69, we convert the maximum angular scale on which alignment is seen into a physical scale in the range [19,38][19, 38] Mpc h701h_{70}^{-1}. This result supports recent evidence reported by Taylor and Jagannathan of radio jet alignment in the 1.41.4 deg2^2 ELAIS N1 field observed with the Giant Metrewave Radio Telescope. The TGSS sample is found to be too sparsely populated to manifest a similar signal

    Searching for pulsars associated with the Fermi GeV excess

    Get PDF
    The Fermi Large Area Telescope has detected an extended region of GeV emission towards the Galactic Centre that is currently thought to be powered by dark matter annihilation or a population of young and/or millisecond pulsars. In a test of the pulsar hypothesis, we have carried out an initial search of a 20 deg2 area centred on the peak of the galactic centre GeV excess. Candidate pulsars were identified as a compact, steep spectrum continuum radio source on interferometric images and followed with targeted single-dish pulsation searches. We report the discovery of the recycled pulsar PSR 1751−2737 with a spin period of 2.23 ms. PSR 1751−2737 appears to be an isolated recycled pulsar located within the disc of our Galaxy, and it is not part of the putative bulge population of pulsars that are thought to be responsible for the excess GeV emission. However, our initial success in this small pilot survey suggests that this hybrid method (i.e. wide-field interferometric imaging followed up with single-dish pulsation searches) may be an efficient alternative strategy for testing whether a putative bulge population of pulsars is responsible for the GeV excess

    Diffuse Radio Emission from Galaxy Clusters

    Full text link
    In a growing number of galaxy clusters diffuse extended radio sources have been found. These sources are not directly associated with individual cluster galaxies. The radio emission reveal the presence of cosmic rays and magnetic fields in the intracluster medium (ICM). We classify diffuse cluster radio sources into radio halos, cluster radio shocks (relics), and revived AGN fossil plasma sources. Radio halo sources can be further divided into giant halos, mini-halos, and possible `intermediate' sources. Halos are generally positioned at cluster center and their brightness approximately follows the distribution of the thermal ICM. Cluster radio shocks (relics) are polarized sources mostly found in the cluster's periphery. They trace merger induced shock waves. Revived fossil plasma sources are characterized by their radio steep-spectra and often irregular morphologies. In this review we give an overview of the properties of diffuse cluster radio sources, with an emphasis on recent observational results. We discuss the resulting implications for the underlying physical acceleration processes that operate in the ICM, the role of relativistic fossil plasma, and the properties of ICM shocks and magnetic fields. We also compile an updated list of diffuse cluster radio sources which will be available on-line http://galaxyclusters.com. We end this review with a discussion on the detection of diffuse radio emission from the cosmic web.Comment: To appear in Space Science Reviews, 56 pages, 31 figures; For associated data see http://galaxyclusters.co
    corecore