117 research outputs found

    Is ZrB12 two gap superconductor?

    Full text link
    We report the measurements of the temperature dependence of the resistivity, \rho(T), magnetic penetration depth,\lambda(T) the lower, Hc1(T), and upper, Hc2(T), critical magnetic fields, for single crystals of dodecaboride ZrB12, diboride ZrB2 and thin films of diboride MgB2. We observe a number of deviations from conventional behavior in these materials. Although ZrB12 behaves like a simple metal in the normal state, the resistive Debye temperature, 300 K, is three times smaller relative to that (800-1200 K) calculated from the specific heat, C(T), data. We observe predominantly quadratic temperature behavior of resistivity in ZrB12 below 25 K, and in ZrB2 below 100 K, indicating the possible importance of the electron-electron interaction in these borides. Superfluid density of ZrB12 displays unconventional temperature dependence with pronounced shoulder at T/Tc equal to 0.65. Contrary to conventional theories we found a linear temperature dependence of Hc2(T) for ZrB12 from Tc down to 0.35 K. We suggest that both \lambda(T) and Hc2(T) dependencies in ZrB12 can be explained by two band BCS model with different superconducting gap and Tc.Comment: PDF file, 12 pages, 10 figures, submitted to Physical Review

    Condon Domain Phase Diagram for Silver

    Get PDF
    We present the Condon domain phase diagram for a silver single crystal measured in magnetic fields up to 28 T and temperatures down to 1.3 K. A standard ac method with a pickup coil system is used at low frequency for the measurements of the de Haas-van Alphen effect (dHvA). The transition point from the state of homogeneous magnetization to the inhomogeneous Condon domain state (CDS) is found as the point where a small irreversibility in the dHvA magnetization arises, as manifested by an extremely nonlinear response in the pickup voltage showing threshold character. The third harmonic content in the ac response is used to determine with high precision the CDS phase boundary. The experimentally determined Condon domain phase diagram is in good agreement with the theoretical prediction calculated by the standard Lifshitz-Kosevich (LK) formula

    Electron transport, penetration depth and upper critical magnetic field of ZrB12 and MgB2

    Full text link
    We report on the synthesis and measurements of the temperature dependence of resistivity, R(T), the penetration depth, l(T), and upper critical magnetic field, Hc2(T), for polycrystalline samples of dodecaboride ZrB12 and diboride MgB2. We conclude that ZrB12 as well as MgB2 behave like simple metals in the normal state with usual Bloch-Gruneisen temperature dependence of resistivity and with rather low resistive Debye temperature, TR=280 K, for ZrB12 (as compared to MgB2 with TR=900 K). The R(T) and l(T) dependencies of ZrB12 reveal a superconducting transition at Tc=6.0 K. Although a clear exponential l(T)dependence in MgB2 thin films and ceramic pellets was observed at low temperatures, this dependence was almost linear for ZrB12 below Tc/2. These features indicate s-wave pairing state in MgB2, whereas a d-wave pairing state is possible in ZrB12. A fit to the data gives a reduced energy gap 2D(0)/kTc=1.6 for MgB2 films and pellets, in good agreement with published data for 3D \pi - sheets of the Fermi surface. Contrary to conventional theories we found a linear temperature dependence of Hc2(T) for ZrB12 (Hc2(0)=0.15 T).Comment: 8 pages, 10 figures, submitted to JET

    Electron transport and anisotropy of the upper critical magnetic field in a Ba0.68K0.32Fe2As2 single crystals

    Full text link
    Early work on the iron-arsenide compounds supported the view, that a reduced dimensionality might be a necessary prerequisite for high-Tc superconductivity. Later, however, it was found that the zero-temperature upper critical magnetic field, Hc2(0), for the 122 iron pnictides is in fact rather isotropic. Here, we report measurements of the temperature dependence of the electrical resistivity, \Gamma(T), in Ba0.5K0.5Fe2As2 and Ba0.68K0.32Fe2As2 single crystals in zero magnetic field and for Ba0.68K0.32Fe2As2 as well in static and pulsed magnetic fields up to 60 T. We find that the resistivity of both compounds in zero field is well described by an exponential term due to inter-sheet umklapp electron-phonon scattering between light electrons around the M point to heavy hole sheets at the \Gamma point in reciprocal space. From our data, we construct an H-T phase diagram for the inter-plane (H || c) and in-plane (H || ab) directions for Ba0.68K0.32Fe2As2. Contrary to published data for underdoped 122 FeAs compounds, we find that Hc2(T) is in fact anisotropic in optimally doped samples down to low temperatures. The anisotropy parameter, {\gamma} = Habc2/Hcc2, is about 2.2 at Tc. For both field orientations we find a concave curvature of the Hc2 lines with decreasing anisotropy and saturation towards lower temperature. Taking into account Pauli spin paramagnetism we perfectly can describe Hc2(T) and its anisotropy.Comment: 7 pages, 3 figure

    Direct Observation of Condon Domains in Silver by Hall Probes

    Full text link
    Using a set of micro Hall probes for the detection of the local induction, the inhomogeneous Condon domain structure has been directly observed at the surface of a pure silver single crystal under strong Landau quantization in magnetic fields up to 10 T. The inhomogeneous induction occurs in the theoretically predicted part of the H-T Condon domain phase diagram. Information about size, shape and orientation of the domains is obtained by analyzing Hall probes placed along and across the long sample axis and by tilting the sample. On a beryllium surface the induction inhomogeneity is almost absent although the expected induction splitting here is at least ten times higher than in silver.Comment: 4 pages, 6 figures, submitted to PR

    Interaction of vortices in thin superconducting films and Berezinskii-Kosterlitz-Thouless transition

    Full text link
    The precondition for the BKT transition in thin superconducting films, the logarithmic intervortex interaction, is satisfied at distances short relative to Λ=2λ2/d\Lambda=2\lambda^2/d, λ\lambda is the London penetration depth of the bulk material and dd is the film thickness. For this reason, the search for the transition has been conducted in samples of the size L<ΛL<\Lambda. It is argued below that film edges turn the interaction into near exponential (short-range) thus making the BKT transition impossible. If however the substrate is superconducting and separated from the film by an insulated layer, the logarithmic intervortex interaction is recovered and the BKT transition should be observable.Comment: 4 pages, no figure

    First Principles Study of the Electronic and Vibrational Properties of LiNbO2

    Full text link
    In the layered transition metal oxide LiNbO2_2 the Nb3+^{3+} (4d24d^2) ion is trigonal-prismatically coordinated with O ions, with the resulting crystal field leading to a single band system for low energy properties. A tight-binding representation shows that intraplanar second neighbor hopping t2=100t_2 = 100 meV dominates the first neighbor interaction (t1=64t_1 = 64 meV). The first and third neighbor couplings are strongly modified by oxygen displacements of the symmetric Raman-active vibrational mode, and electron-phonon coupling to this motion may provide the coupling mechanism for superconductivity in Li-deficient samples (where Tc=5T_c = 5 K). We calculate all zone-center phonon modes, identify infrared (IR) and Raman active modes, and report LO-TO splitting of the IR modes. The Born effective charges for the metal ions are found to have considerable anisotropy reflecting the degree to which the ions participate in interlayer coupling and covalent bonding. Insight into the microscopic origin of the valence band density, composed of Nb dz2d_{z^2} states with some mixing of O 2p2p states, is obtained from examining Wannier functions for these bands.Comment: 12 pages, 7 figures; Updated with reviewer comments; Updated reference

    Upper critical magnetic field in Ba_0.68K_0.32Fe_2As_2 and Ba(Fe_0.93Co_0.07)_2As_2

    Get PDF
    We report measurements of the temperature dependence of the radio-frequency magnetic penetration depth in Ba_0.68K_0.32Fe_2As_2 and Ba(Fe_0.93Co_0.07)_2As_2 single crystals in pulsed magnetic fields up to 60 T. From our data, we construct an H-T phase diagram for the inter-plane (H || c) and in-plane (H || ab) directions for both compounds. For both field orientations in Ba_0.68K_0.32Fe_2As_2, we find a concave curvature of the Hc2(T) lines with decreasing anisotropy and saturation towards lower temperature. Taking into account Pauli spin paramagnetism we can describe Hc2(T) and its anisotropy. In contrast, we find that Pauli paramagnetic pair breaking is not essential for Ba(Fe_0.93Co_0.07)_2As_2. For this electron-doped compound, the data support a Hc2(T) dependence that can be described by the Werthamer Helfand Hohenberg model for H || ab and a two-gap behavior for H || c.Comment: 7 pages, 8 figure
    corecore