1,474 research outputs found

    Chaotic cold accretion onto black holes

    Full text link
    Using 3D AMR simulations, linking the 50 kpc to the sub-pc scales over the course of 40 Myr, we systematically relax the classic Bondi assumptions in a typical galaxy hosting a SMBH. In the realistic scenario, where the hot gas is cooling, while heated and stirred on large scales, the accretion rate is boosted up to two orders of magnitude compared with the Bondi prediction. The cause is the nonlinear growth of thermal instabilities, leading to the condensation of cold clouds and filaments when t_cool/t_ff < 10. Subsonic turbulence of just over 100 km/s (M > 0.2) induces the formation of thermal instabilities, even in the absence of heating, while in the transonic regime turbulent dissipation inhibits their growth (t_turb/t_cool < 1). When heating restores global thermodynamic balance, the formation of the multiphase medium is violent, and the mode of accretion is fully cold and chaotic. The recurrent collisions and tidal forces between clouds, filaments and the central clumpy torus promote angular momentum cancellation, hence boosting accretion. On sub-pc scales the clouds are channelled to the very centre via a funnel. A good approximation to the accretion rate is the cooling rate, which can be used as subgrid model, physically reproducing the boost factor of 100 required by cosmological simulations, while accounting for fluctuations. Chaotic cold accretion may be common in many systems, such as hot galactic halos, groups, and clusters, generating high-velocity clouds and strong variations of the AGN luminosity and jet orientation. In this mode, the black hole can quickly react to the state of the entire host galaxy, leading to efficient self-regulated AGN feedback and the symbiotic Magorrian relation. During phases of overheating, the hot mode becomes the single channel of accretion (with a different cuspy temperature profile), though strongly suppressed by turbulence.Comment: Accepted by MNRAS: added comments and references. Your feedback is welcom

    Where does the gas fueling star formation in BCGs originate?

    Get PDF
    We investigate the relationship between X-ray cooling and star formation in brightest cluster galaxies (BCGs). We present an X-ray spectral analysis of the inner regions, 10-40 kpc, of six nearby cool core clusters (z<0.35) observed with Chandra ACIS. This sample is selected on the basis of the high star formation rate (SFR) observed in the BCGs. We restrict our search for cooling gas to regions that are roughly cospatial with the starburst. We fit single- and multi-temperature mkcflow models to constrain the amount of isobarically cooling intracluster medium (ICM). We find that in all clusters, below a threshold temperature ranging between 0.9 and 3 keV, only upper limits can be obtained. In four out of six objects, the upper limits are significantly below the SFR and in two, namely A1835 and A1068, they are less than a tenth of the SFR. Our results suggests that a number of mechanisms conspire to hide the cooling signature in our spectra. In a few systems the lack of a cooling signature may be attributed to a relatively long delay time between the X-ray cooling and the star burst. However, for A1835 and A1068, where the X-ray cooling time is shorter than the timescale of the starburst, a possible explanation is that the region where gas cools out of the X-ray phase extends to very large radii, likely beyond the core of these systems.Comment: to appear in A&

    On the connection between turbulent motions and particle acceleration in galaxy clusters

    Get PDF
    Giant radio halos are Mpc-scale diffuse radio sources associated with the central regions of galaxy clusters. The most promising scenario to explain the origin of these sources is that of turbulent re-acceleration, in which MeV electrons injected throughout the formation history of galaxy clusters are accelerated to higher energies by turbulent motions mostly induced by cluster mergers. In this Letter, we use the amplitude of density fluctuations in the intracluster medium as a proxy for the turbulent velocity and apply this technique to a sample of 51 clusters with available radio data. Our results indicate a segregation in the turbulent velocity of radio halo and radio quiet clusters, with the turbulent velocity of the former being on average higher by about a factor of two. The velocity dispersion recovered with this technique correlates with the measured radio power through the relation Pradioσv3.3±0.7P_{\rm radio}\propto\sigma_v^{3.3\pm0.7}, which implies that the radio power is nearly proportional to the turbulent energy rate. Our results provide an observational confirmation of a key prediction of the turbulent re-acceleration model and possibly shed light on the origin of radio halos.Comment: Submitted to ApJ Letter

    Unification of X-ray winds in Seyfert galaxies: from ultra-fast outflows to warm absorbers

    Get PDF
    The existence of ionized X-ray absorbing layers of gas along the line of sight to the nuclei of Seyfert galaxies is a well established observational fact. This material is systematically outflowing and shows a large range in parameters. However, its actual nature and dynamics are still not clear. In order to gain insights into these important issues we performed a literature search for papers reporting the parameters of the soft X-ray warm absorbers (WAs) in 35 type 1 Seyferts and compared their properties to those of the ultra-fast outflows (UFOs) detected in the same sample. The fraction of sources with WAs is >60%, consistent with previous studies. The fraction of sources with UFOs is >34%, >67% of which also show WAs. The large dynamic range obtained when considering all the absorbers together allows us, for the first time, to investigate general relations among them. In particular, we find significant correlations indicating that the closer the absorber is to the central black hole, the higher the ionization, column, outflow velocity and consequently the mechanical power. The absorbers continuously populate the whole parameter space, with the WAs and the UFOs lying always at the two ends of the distribution. This strongly suggest that these absorbers, often considered of different types, could actually represent parts of a single large-scale stratified outflow observed at different locations from the black hole. The observed parameters and correlations are consistent with both radiation pressure through Compton scattering and MHD processes contributing to the outflow acceleration, the latter playing a major role. Most of the absorbers, especially the UFOs, have a sufficiently high mechanical power to significantly contribute to AGN feedback.Comment: Manuscript updated to match the MNRAS published version. Link to the related INAF news: http://www.media.inaf.it/2013/02/05/warm-absorbers

    The stripping of a galaxy group diving into the massive cluster A2142

    Full text link
    Structure formation in the current Universe operates through the accretion of group-scale systems onto massive clusters. The detection and study of such accreting systems is crucial to understand the build-up of the most massive virialized structures we see today. We report the discovery with XMM-Newton of an irregular X-ray substructure in the outskirts of the massive galaxy cluster Abell 2142. The tip of the X-ray emission coincides with a concentration of galaxies. The bulk of the X-ray emission of this substructure appears to be lagging behind the galaxies and extends over a projected scale of at least 800 kpc. The temperature of the gas in this region is 1.4 keV, which is a factor of ~4 lower than the surrounding medium and is typical of the virialized plasma of a galaxy group with a mass of a few 10^13M_sun. For this reason, we interpret this structure as a galaxy group in the process of being accreted onto the main dark-matter halo. The X-ray structure trailing behind the group is due to gas stripped from its original dark-matter halo as it moves through the intracluster medium (ICM). This is the longest X-ray trail reported to date. For an infall velocity of ~1,200 km s-1 we estimate that the stripped gas has been surviving in the presence of the hot ICM for at least 600 Myr, which exceeds the Spitzer conduction timescale in the medium by a factor of >~400. Such a strong suppression of conductivity is likely related to a tangled magnetic field with small coherence length and to plasma microinstabilities. The long survival time of the low-entropy intragroup medium suggests that the infalling material can eventually settle within the core of the main cluster.Comment: 11 pages, 7 figures, accepted for publication in A&

    A textbook example of ram-pressure stripping in the Hydra A/A780 cluster

    Get PDF
    In the current epoch, one of the main mechanisms driving the growth of galaxy clusters is the continuous accretion of group-scale halos. In this process, the ram pressure applied by the hot intracluster medium on the gas content of the infalling group is responsible for stripping the gas from its dark-matter halo, which gradually leads to the virialization of the infalling gas in the potential well of the main cluster. Using deep wide-field observations of the poor cluster Hydra A/A780 with XMM-Newton and Suzaku, we report the discovery of an infalling galaxy group 1.1 Mpc south of the cluster core. The presence of a substructure is confirmed by a dynamical study of the galaxies in this region. A wake of stripped gas is trailing behind the group over a projected scale of 760 kpc. The temperature of the gas along the wake is constant at kT ~ 1.3 keV, which is about a factor of two less than the temperature of the surrounding plasma. We observe a cold front pointing westwards compared to the peak of the group, which indicates that the group is currently not moving in the direction of the main cluster, but is moving along an almost circular orbit. The overall morphology of the group bears remarkable similarities with high-resolution numerical simulations of such structures, which greatly strengthens our understanding of the ram-pressure stripping process

    Human leucocyte antigen diversity: a biological gift to escape infections, no longer a barrier for haploidentical hemopoietic stem cell transplantation

    Get PDF
    Since the beginning of life, every multicellular organism appeared to have a complex innate immune system although the adaptive immune system, centred on lymphocytes bearing antigen receptors generated by somatic recombination, arose in jawed fish approximately 500 million years ago. The major histocompatibility complex MHC, named the Human leucocyte antigen (HLA) system in humans, represents a vital function structure in the organism by presenting pathogen-derived peptides to T cells as the main initial step of the adaptive immune response. The huge level of polymorphism observed in HLA genes definitely reflects selection, favouring heterozygosity at the individual or population level, in a pathogen-rich environment, although many are located in introns or in exons that do not code for the antigen-biding site of the HLA. Over the past three decades, the extent of allelic diversity at HLA loci has been well characterized using high-resolution HLA-DNA typing and the number of new HLA alleles, produced through next-generation sequencing methods, is even more rapidly increasing. The level of the HLA system polymorphism represents an obstacle to the search of potential compatible donors for patients affected by haematological disease proposed for a hematopoietic stem cell transplant (HSCT). Data reported in literature clearly show that antigenic and/or allelic mismatches between related or unrelated donors and patients influences the successful HSCT outcome. However, the recent development of the new transplant strategy based on the choice of haploidentical donors for HSCT is questioning the role of HLA compatibility, since the great HLA disparities present do not worsen the overall clinical outcome. Nowadays, NGS has contributed to define at allelic levels the HLA polymorphism and solve potential ambiguities. However, HLA functions and tissue typing probably need to be further investigated in the next future, to understand the reasons why in haploidentical transplants the presence of a whole mismatch haplotype between donors and recipients, both the survival rate and the incidence of acute GvHD or graft rejection are similar to those reported for unrelated HSCTs

    Deep Chandra observations of the stripped galaxy group falling into Abell 2142

    Get PDF
    In the local Universe, the growth of massive galaxy clusters mainly operates through the continuous accretion of group-scale systems. The infalling group in Abell 2142 is the poster child of such an accreting group, and as such, it is an ideal target to study the astrophysical processes induced by structure formation. We present the results of a deep (200 ks) observation of this structure with Chandra, which highlights the complexity of this system in exquisite detail. In the core of the group, the spatial resolution of Chandra reveals the presence of a leading edge and a complex AGN-induced activity. The morphology of the stripped gas tail appears straight in the innermost 250 kpc, suggesting that magnetic draping efficiently shields the gas from its surroundings. However, beyond 300\sim300 kpc from the core, the tail flares and the morphology becomes strongly irregular, which could be explained by a breaking of the drape, e.g. because of turbulent motions. The power spectrum of surface-brightness fluctuations is relatively flat (P2Dk2.3P_{2D}\propto k^{-2.3}), which indicates that thermal conduction is strongly inhibited even beyond the region where magnetic draping is effective. The amplitude of density fluctuations in the tail is consistent with a mild level of turbulence with a Mach number M3D0.10.25M_{3D}\sim0.1-0.25. Overall, our results show that the processes leading to the thermalization and mixing of the infalling gas are slow and relatively inefficient.Comment: Accepted for publication in A&

    Deep Chandra observations of the stripped galaxy group falling into Abell 2142

    Get PDF
    In the local Universe, the growth of massive galaxy clusters mainly operates through the continuous accretion of group-scale systems. The infalling group in Abell 2142 is the poster child of such an accreting group, and as such, it is an ideal target to study the astrophysical processes induced by structure formation. We present the results of a deep (200 ks) observation of this structure with Chandra that highlights the complexity of this system in exquisite detail. In the core of the group, the spatial resolution of Chandra reveals a leading edge and complex AGN-induced activity. The morphology of the stripped gas tail appears straight in the innermost 250 kpc, suggesting that magnetic draping efficiently shields the gas from its surroundings. However, beyond ~ 300 kpc from the core, the tail flares and the morphology becomes strongly irregular, which could be explained by a breaking of the drape, for example, caused by turbulent motions. The power spectrum of surface-brightness fluctuations is relatively flat (P2D ∝ k⁻²∙³ which indicates that thermal conduction is strongly inhibited even beyond the region where magnetic draping is effective. The amplitude of density fluctuations in the tail is consistent with a mild level of turbulence with a Mach number M3D ~ 0:1 -0:25. Overall, our results show that the processes leading to the thermalization and mixing of the infalling gas are slow and relatively inefficient
    corecore