326 research outputs found

    A Networks-Science Investigation into the Epic Poems of Ossian

    Get PDF
    In 1760 James Macpherson published the first volume of a series of epic poems which he claimed to have translated into English from ancient Scottish-Gaelic sources. The poems, which purported to have been composed by a third-century bard named Ossian, quickly achieved wide international acclaim. They invited comparisons with major works of the epic tradition, including Homer's Iliad and Odyssey, and effected a profound influence on the emergent Romantic period in literature and the arts. However, the work also provoked one of the most famous literary controversies of all time, colouring the reception of the poetry to this day. The authenticity of the poems was questioned by some scholars, while others protested that they misappropriated material from Irish mythological sources. Recent years have seen a growing critical interest in Ossian, initiated by revisionist and counter-revisionist scholarship and by the two-hundred-and-fiftieth anniversary of the first collected edition of the poems in 1765. Here we investigate Ossian from a networks-science point of view. We compare the connectivity structures underlying the societies described in the Ossianic narratives with those of ancient Greek and Irish sources. Despite attempts, from the outset, to position Ossian alongside the Homeric epics and to distance it from Irish sources, our results indicate significant network-structural differences between Macpherson's text and those of Homer. They also show a strong similarity between Ossianic networks and those of the narratives known as Acallam na Sen\'orach (Colloquy of the Ancients) from the Fenian Cycle of Irish mythology.Comment: Accepted for publication in Advances in Complex system

    Membrane amplitude and triaxial stress in twisted bilayer graphene deciphered using first-principles directed elasticity theory and scanning tunneling microscopy

    Get PDF
    Twisted graphene layers produce a moir\'e pattern (MP) structure with a predetermined wavelength for given twist angle. However, predicting the membrane corrugation amplitude for any angle other than pure AB-stacked or AA-stacked graphene is impossible using first-principles density functional theory (DFT) due to the large supercell. Here, within elasticity theory we define the MP structure as the minimum energy configuration, thereby leaving the height amplitude as the only unknown parameter. The latter is determined from DFT calculations for AB and AA stacked bilayer graphene in order to eliminate all fitting parameters. Excellent agreement with scanning tunneling microscopy (STM) results across multiple substrates is reported as function of twist angle.Comment: to appear in Phys. Rev.

    Polarization selection rules for inter-Landau level transitions in epitaxial graphene revealed by infrared optical Hall effect

    Full text link
    We report on polarization selection rules of inter-Landau level transitions using reflection-type optical Hall effect measurements from 600 to 4000 cm-1 on epitaxial graphene grown by thermal decomposition of silicon carbide. We observe symmetric and anti-symmetric signatures in our data due to polarization preserving and polarization mixing inter-Landau level transitions, respectively. From field-dependent measurements we identify that transitions in decoupled graphene mono-layers are governed by polarization mixing selection rules, whereas transitions in coupled graphene mono-layers are governed by polarization preserving selection rules. The selection rules may find explanation by different coupling mechanisms of inter-Landau level transitions with free charge carrier magneto-optic plasma oscillations
    • …
    corecore