80 research outputs found

    Evaluation of sit-stand workstations in an office setting: A randomised controlled trial

    Get PDF
    Background: Excessive sitting time is a risk factor for cardiovascular disease mortality and morbidity independent of physical activity. This aim of this study was to evaluate the impact of a sit-stand workstation on sitting time, and vascular, metabolic and musculoskeletal outcomes in office workers, and to investigate workstation acceptability and feasibility. Methods: A two-arm, parallel-group, individually randomised controlled trial was conducted in one organisation. Participants were asymptomatic full-time office workers aged ≥18 years. Each participant in the intervention arm had a sit-stand workstation installed on their workplace desk for 8 weeks. Participants in the control arm received no intervention. The primary outcome was workplace sitting time, assessed at 0, 4 and 8 weeks by an ecological momentary assessment diary. Secondary behavioural, cardiometabolic and musculoskeletal outcomes were assessed. Acceptability and feasibility were assessed via questionnaire and interview. ANCOVA and magnitude-based inferences examined intervention effects relative to controls at 4 and 8 weeks. Participants and researchers were not blind to group allocation. Results: Forty-seven participants were randomised (intervention n = 26; control n = 21). Relative to the control group at 8 weeks, the intervention group had a beneficial decrease in sitting time (-80.2 min/8-h workday (95 % CI = -129.0, -31.4); p = 0.002), increase in standing time (72.9 min/8-h workday (21.2, 124.6); p = 0.007) and decrease in total cholesterol (-0.40 mmol/L (-0.79, -0.003); p = 0.049). No harmful changes in musculoskeletal discomfort/pain were observed relative to controls, and beneficial changes in flow-mediated dilation and diastolic blood pressure were observed. Most participants self-reported that the workstation was easy to use and their work-related productivity did not decrease when using the device. Factors that negatively influenced workstation use were workstation design, the social environment, work tasks and habits. Conclusion: Short-term use of a feasible sit-stand workstation reduced daily sitting time and led to beneficial improvements in cardiometabolic risk parameters in asymptomatic office workers. These findings imply that if the observed use of the sit-stand workstations continued over a longer duration, sit-stand workstations may have important ramifications for the prevention and reduction of cardiometabolic risk in a large proportion of the working population. Trial registration: ClinicalTrials.gov NCT02496507

    Prevalence of anaemia in older persons: systematic review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ageing populations will impact on healthcare provision, especially since extra years are not necessarily spent in good health. It is important to identify and understand the significance of common medical problems in older people. Anaemia may be one such problem. We report on the prevalence of anaemia in cohorts of elderly people in the general population. The presence of anaemia is associated with a worse prognosis for both morbidity and mortality.</p> <p>Methods</p> <p>Electronic searching and reference lists of published reports were used to identify studies that reported on prevalence of anaemia in cohorts of at least 100 individuals predominantly aged 65 years and over living in developed countries, together with criteria used to define anaemia. Studies of anaemia prevalence in specific disease groups or published before 1980 were excluded. Prevalence data for the entire cohort, for men and women separately and for different age bands were extracted.</p> <p>Results</p> <p>Forty-five studies contributed data. Thirty-four studies (n = 85,409) used WHO criteria to define anaemia. The weighted mean prevalence was 17% (3–50%) overall, and 12% (3–25%) in studies based in the community (27, n = 69,975), 47% (31–50%) in nursing homes (3, n = 1481), and 40% (40–72%) in hospital admissions (4, n = 13,953). Anaemia prevalence increased with age, was slightly higher in men than women, and was higher in black people than white. Most individuals classified as anaemic using WHO criteria were only mildly anaemic.</p> <p>Conclusion</p> <p>Anaemia, as defined by WHO criteria, is common in older people living in the community and particularly common in nursing home residents and hospital admissions. Predicted demographic changes underline the need to understand more about anaemia in older people.</p

    Genome-Wide Functional Profiling Reveals Genes Required for Tolerance to Benzene Metabolites in Yeast

    Get PDF
    Benzene is a ubiquitous environmental contaminant and is widely used in industry. Exposure to benzene causes a number of serious health problems, including blood disorders and leukemia. Benzene undergoes complex metabolism in humans, making mechanistic determination of benzene toxicity difficult. We used a functional genomics approach to identify the genes that modulate the cellular toxicity of three of the phenolic metabolites of benzene, hydroquinone (HQ), catechol (CAT) and 1,2,4-benzenetriol (BT), in the model eukaryote Saccharomyces cerevisiae. Benzene metabolites generate oxidative and cytoskeletal stress, and tolerance requires correct regulation of iron homeostasis and the vacuolar ATPase. We have identified a conserved bZIP transcription factor, Yap3p, as important for a HQ-specific response pathway, as well as two genes that encode putative NAD(P)H:quinone oxidoreductases, PST2 and YCP4. Many of the yeast genes identified have human orthologs that may modulate human benzene toxicity in a similar manner and could play a role in benzene exposure-related disease

    A New Mechanistic Scenario for the Origin and Evolution of Vertebrate Cartilage

    Get PDF
    The appearance of cellular cartilage was a defining event in vertebrate evolution because it made possible the physical expansion of the vertebrate “new head”. Despite its central role in vertebrate evolution, the origin of cellular cartilage has been difficult to understand. This is largely due to a lack of informative evolutionary intermediates linking vertebrate cellular cartilage to the acellular cartilage of invertebrate chordates. The basal jawless vertebrate, lamprey, has long been considered key to understanding the evolution of vertebrate cartilage. However, histological analyses of the lamprey head skeleton suggest it is composed of modern cellular cartilage and a putatively unrelated connective tissue called mucocartilage, with no obvious transitional tissue. Here we take a molecular approach to better understand the evolutionary relationships between lamprey cellular cartilage, gnathostome cellular cartilage, and lamprey mucocartilage. We find that despite overt histological similarity, lamprey and gnathostome cellular cartilage utilize divergent gene regulatory networks (GRNs). While the gnathostome cellular cartilage GRN broadly incorporates Runx, Barx, and Alx transcription factors, lamprey cellular cartilage does not express Runx or Barx, and only deploys Alx genes in certain regions. Furthermore, we find that lamprey mucocartilage, despite its distinctive mesenchymal morphology, deploys every component of the gnathostome cartilage GRN, albeit in different domains. Based on these findings, and previous work, we propose a stepwise model for the evolution of vertebrate cellular cartilage in which the appearance of a generic neural crest-derived skeletal tissue was followed by a phase of skeletal tissue diversification in early agnathans. In the gnathostome lineage, a single type of rigid cellular cartilage became dominant, replacing other skeletal tissues and evolving via gene cooption to become the definitive cellular cartilage of modern jawed vertebrates

    Development of the serotonergic cells in murine raphe nuclei and their relations with rhombomeric domains

    Full text link

    Recruitment and Consolidation of Cell Assemblies for Words by Way of Hebbian Learning and Competition in a Multi-Layer Neural Network

    Get PDF
    Current cognitive theories postulate either localist representations of knowledge or fully overlapping, distributed ones. We use a connectionist model that closely replicates known anatomical properties of the cerebral cortex and neurophysiological principles to show that Hebbian learning in a multi-layer neural network leads to memory traces (cell assemblies) that are both distributed and anatomically distinct. Taking the example of word learning based on action-perception correlation, we document mechanisms underlying the emergence of these assemblies, especially (i) the recruitment of neurons and consolidation of connections defining the kernel of the assembly along with (ii) the pruning of the cell assembly’s halo (consisting of very weakly connected cells). We found that, whereas a learning rule mapping covariance led to significant overlap and merging of assemblies, a neurobiologically grounded synaptic plasticity rule with fixed LTP/LTD thresholds produced minimal overlap and prevented merging, exhibiting competitive learning behaviour. Our results are discussed in light of current theories of language and memory. As simulations with neurobiologically realistic neural networks demonstrate here spontaneous emergence of lexical representations that are both cortically dispersed and anatomically distinct, both localist and distributed cognitive accounts receive partial support

    Malaria parasite clearance

    Full text link

    Phonemes:Lexical access and beyond

    Get PDF
    corecore