2,842 research outputs found

    Reconciling long-term cultural diversity and short-term collective social behavior

    Get PDF
    An outstanding open problem is whether collective social phenomena occurring over short timescales can systematically reduce cultural heterogeneity in the long run, and whether offline and online human interactions contribute differently to the process. Theoretical models suggest that short-term collective behavior and long-term cultural diversity are mutually excluding, since they require very different levels of social influence. The latter jointly depends on two factors: the topology of the underlying social network and the overlap between individuals in multidimensional cultural space. However, while the empirical properties of social networks are well understood, little is known about the large-scale organization of real societies in cultural space, so that random input specifications are necessarily used in models. Here we use a large dataset to perform a high-dimensional analysis of the scientific beliefs of thousands of Europeans. We find that inter-opinion correlations determine a nontrivial ultrametric hierarchy of individuals in cultural space, a result unaccessible to one-dimensional analyses and in striking contrast with random assumptions. When empirical data are used as inputs in models, we find that ultrametricity has strong and counterintuitive effects, especially in the extreme case of long-range online-like interactions bypassing social ties. On short time-scales, it strongly facilitates a symmetry-breaking phase transition triggering coordinated social behavior. On long time-scales, it severely suppresses cultural convergence by restricting it within disjoint groups. We therefore find that, remarkably, the empirical distribution of individuals in cultural space appears to optimize the coexistence of short-term collective behavior and long-term cultural diversity, which can be realized simultaneously for the same moderate level of mutual influence

    Sleep preserves original and distorted memory traces

    Get PDF
    Retrieval facilitates the long-term retention of memories, but may also enable stored representations to be updated with new information that is available at the time of retrieval. However, if information integrated during retrieval is erroneous, future recall can be impaired: a phenomenon known as retrieval-induced distortion (RID). Whether RID causes an “overwriting” of existing memory traces or leads to the co-existence of original and distorted memory traces is unknown. Because sleep enhances memory consolidation, the effects of sleep after RID can provide novel insights into the structure of updated memories. As such, we investigated the effects of sleep on memory consolidation following RID. Participants encoded word locations and were then tested before (T1) and after (T2) an interval of sleep or wakefulness. At T2, the majority of words were placed closer to the locations retrieved at T1 than to the studied locations, consistent with RID. After sleep compared with after wake, the T2-retrieved locations were closer to both the studied locations and the T1-retrieved locations. These findings suggest that RID leads to the formation of an additional memory trace that corresponds to a distorted variant of the same encoding event, which is strengthened alongside the original trace during sleep. More broadly, these data provide evidence for the importance of sleep in the preservation and adaptive updating of memories

    Providing adhesion for a miniture mobile intra-abdominal device based on biomimetic principles

    Get PDF
    This paper investigates the surface adhesion characteristics required for a miniature mobile device to move around the abdominal cavity. Such a device must be capable of adhering to the tissue lining and move freely across the upper surface of the insufflated abdomen. Accordingly, the potential of utilising bioinspired solutions to facilitate wet adhesion is assessed

    Responses to Low Double-Strand Break Levels in Budding Yeast Meiosis

    Get PDF
    During meiosis, one round of DNA replication is followed by two rounds of chromosome segregation, producing four haploid gametes from each diploid precursor cell. Self-inflicted DNA double-strand breaks (DSBs) occur in prophase of meiosis I. A subset of DSBs are repaired using the homologous chromosome as template for homologous recombination, generating crossovers/chiasmata. When processing of DSBs is defective, the recombination checkpoint delays onset of the first meiotic cell division. Here, I have investigated mechanisms by which the budding yeast S. cerevisiae responds to low levels of initiating DSBs. A novel checkpoint is identified that is specifically triggered by low DSB levels, but not a lack thereof. This checkpoint is mediated by widely-conserved meiotic checkpoint ATPase Pch2. I propose that during normal meiosis, this low DSB checkpoint delays progress through meiosis until threshold levels of DSBs have been reached. Using genetic approaches, I have also identified three pathways by which the viability of gametes formed during low-DSB meiosis can be improved. Accordingly, (i) higher temperatures, (ii) abrogation of DSB-dependent histone H2A phosphorylation and (iii) overexpression of chromosome structure protein Hop1 constitute determinants for functional gamete formation at low DSB levels. Together, these findings suggest the existence of several layers that ensure faithful chromosome segregation during meiosi

    Mechanisms of memory retrieval in slow-wave sleep : memory retrieval in slow-wave sleep

    Get PDF
    Study Objectives: Memories are strengthened during sleep. The benefits of sleep for memory can be enhanced by re-exposing the sleeping brain to auditory cues; a technique known as targeted memory reactivation (TMR). Prior studies have not assessed the nature of the retrieval mechanisms underpinning TMR: the matching process between auditory stimuli encountered during sleep and previously encoded memories. We carried out two experiments to address this issue. Methods: In Experiment 1, participants associated words with verbal and non-verbal auditory stimuli before an overnight interval in which subsets of these stimuli were replayed in slow-wave sleep. We repeated this paradigm in Experiment 2 with the single difference that the gender of the verbal auditory stimuli was switched between learning and sleep. Results: In Experiment 1, forgetting of cued (vs. non-cued) associations was reduced by TMR with verbal and non-verbal cues to similar extents. In Experiment 2, TMR with identical non-verbal cues reduced forgetting of cued (vs. non-cued) associations, replicating Experiment 1. However, TMR with non-identical verbal cues reduced forgetting of both cued and non-cued associations. Conclusions: These experiments suggest that the memory effects of TMR are influenced by the acoustic overlap between stimuli delivered at training and sleep. Our findings hint at the existence of two processing routes for memory retrieval during sleep. Whereas TMR with acoustically identical cues may reactivate individual associations via simple episodic matching, TMR with non-identical verbal cues may utilise linguistic decoding mechanisms, resulting in widespread reactivation across a broad category of memories

    The benefits of targeted memory reactivation for consolidation in sleep are contingent on memory accuracy and direct cue-memory associations

    Get PDF
    Objectives: To investigate how the effects of targeted memory reactivation (TMR) are influenced by memory accuracy prior to sleep and the presence or absence of direct cue-memory associations. Methods: 30 participants associated each of 50 pictures with an unrelated word and then with a screen location in two separate tasks. During picture-location training, each picture was also presented with a semantically related sound. The sounds were therefore directly associated with the picture locations but indirectly associated with the words. During a subsequent nap, half of the sounds were replayed in slow wave sleep (SWS) (TMR). The effect of TMR on memory for the picture locations (direct cue-memory associations) and picture-word pairs (indirect cue-memory associations) was then examined. Results: TMR reduced overall memory decay for recall of picture locations. Further analyses revealed a benefit of TMR for picture locations recalled with a low degree of accuracy prior to sleep, but not those recalled with a high degree of accuracy. The benefit of TMR for low accuracy memories was predicted by time spent in SWS. There was no benefit of TMR for memory of the picture-word pairs, irrespective of memory accuracy prior to sleep. Conclusions: TMR provides the greatest benefit to memories recalled with a low degree of accuracy prior to sleep. The memory benefits of TMR may also be contingent on direct cue-memory associations

    Variability of Active Galactic Nuclei from the Optical to X-ray Regions

    Full text link
    Some progress in understanding AGN variability is reviewed. Reprocessing of X-ray radiation to produce significant amounts of longer-wavelength continua seems to be ruled out. In some objects where there has been correlated X-ray and optical variability, the amplitude of the optical variability has exceeded the amplitude of X-ray variability. We suggest that accelerated particles striking material could be linking X-ray and optical variability (as in activity in the solar chromosphere). Beaming effects could be significant in all types of AGN. The diversity in optical/X-ray relationships at different times in the same object, and between different objects, might be explained by changes in geometry and directions of motion relative to our line of sight. Linear shot-noise models of the variability are ruled out; instead there must be large-scale organization of variability. Variability occurs on light-crossing timescales rather than viscous timescales and this probably rules out the standard Shakura-Sunyaev accretion disk. Radio-loud and radio-quiet AGNs have similar continuum shapes and similar variability properties. This suggests similar continuum origins and variability mechanisms. Despite their extreme X-ray variability, narrow-line Seyfert 1s (NLS1s) do not show extreme optical variability.Comment: Invited talk given at Euro Asian Astronomical Society meeting in Moscow, June 2002. 20 pages, 4 figures. References update

    Setting UBVRI Photometric Zero-Points Using Sloan Digital Sky Survey ugriz Magnitudes

    Get PDF
    We discuss the use of Sloan Digital Sky Survey (SDSS) ugriz point-spread function (PSF) photometry for setting the zero points of UBVRI CCD images. From a comparison with the Landolt (1992) standards and our own photometry we find that there is a fairly abrupt change in B, V, R, & I zero points around g, r, i ~ 14.5, and in the U zero point at u ~ 16. These changes correspond to where there is significant interpolation due to saturation in the SDSS PSF fluxes. There also seems to be another, much smaller systematic effect for stars with g, r > 19.5. The latter effect is consistent with a small Malmquist bias. Because of the difficulties with PSF fluxes of brighter stars, we recommend that comparisons of ugriz and UBVRI photometry should only be made for unsaturated stars with g, r and i in the range 14.5 - 19.5, and u in the range 16 - 19.5. We give a prescription for setting the UBVRI zero points for CCD images, and general equations for transforming from ugriz to UBVRI.Comment: 13 pages. 6 figures. Accepted for publication in the Astronomical Journa
    corecore