93 research outputs found

    Markers of automaticity in sleep-associated consolidation of novel words

    Get PDF
    Two experiments investigated effects of sleep on consolidation and integration of novel form-meaning mappings using size congruity and semantic distance paradigms. Both paradigms have been used in previous studies to measure automatic access to word meanings. When participants compare semantic or physical font size of written word-pairs (e.g. BEE–COW), judgments are typically faster if relative sizes are congruent across both dimensions. Semantic distance effects are also found for wellestablished words, with semantic size judgements faster for pairs that differ substantially on this dimension. English-speaking participants learned novel form-meaning mappings with Mandarin (Experiment 1) or Malay (Experiment 2) words and were tested following overnight sleep or a similar duration awake. Judgements on English words controlled for circadian effects. The sleep group demonstrated selective stronger size congruity and semantic distance effects for novel word-pairs. This benefit occurred in Experiment 1 for semantic size comparisons of novel words, and in Experiment 2 on comparisons where novel pairs had large distances and font differences (for congruity effects) or in congruent trials (for semantic distance effects). Conversely, these effects were equivalent across sleep and wake for English words. Experiment 2 included polysomnography data and revealed that changes in the strength of semantic distance and congruity effects were positively correlated with slow-wave sleep and sleep spindles respectively. These findings support systems consolidation accounts of declarative learning and suggest that sleep plays an active role in integrating new words with existing knowledge, resulting in increased automatic access of the acquired knowledge

    Mechanisms of memory retrieval in slow-wave sleep : memory retrieval in slow-wave sleep

    Get PDF
    Study Objectives: Memories are strengthened during sleep. The benefits of sleep for memory can be enhanced by re-exposing the sleeping brain to auditory cues; a technique known as targeted memory reactivation (TMR). Prior studies have not assessed the nature of the retrieval mechanisms underpinning TMR: the matching process between auditory stimuli encountered during sleep and previously encoded memories. We carried out two experiments to address this issue. Methods: In Experiment 1, participants associated words with verbal and non-verbal auditory stimuli before an overnight interval in which subsets of these stimuli were replayed in slow-wave sleep. We repeated this paradigm in Experiment 2 with the single difference that the gender of the verbal auditory stimuli was switched between learning and sleep. Results: In Experiment 1, forgetting of cued (vs. non-cued) associations was reduced by TMR with verbal and non-verbal cues to similar extents. In Experiment 2, TMR with identical non-verbal cues reduced forgetting of cued (vs. non-cued) associations, replicating Experiment 1. However, TMR with non-identical verbal cues reduced forgetting of both cued and non-cued associations. Conclusions: These experiments suggest that the memory effects of TMR are influenced by the acoustic overlap between stimuli delivered at training and sleep. Our findings hint at the existence of two processing routes for memory retrieval during sleep. Whereas TMR with acoustically identical cues may reactivate individual associations via simple episodic matching, TMR with non-identical verbal cues may utilise linguistic decoding mechanisms, resulting in widespread reactivation across a broad category of memories

    Sleep preserves original and distorted memory traces

    Get PDF
    Retrieval facilitates the long-term retention of memories, but may also enable stored representations to be updated with new information that is available at the time of retrieval. However, if information integrated during retrieval is erroneous, future recall can be impaired: a phenomenon known as retrieval-induced distortion (RID). Whether RID causes an “overwriting” of existing memory traces or leads to the co-existence of original and distorted memory traces is unknown. Because sleep enhances memory consolidation, the effects of sleep after RID can provide novel insights into the structure of updated memories. As such, we investigated the effects of sleep on memory consolidation following RID. Participants encoded word locations and were then tested before (T1) and after (T2) an interval of sleep or wakefulness. At T2, the majority of words were placed closer to the locations retrieved at T1 than to the studied locations, consistent with RID. After sleep compared with after wake, the T2-retrieved locations were closer to both the studied locations and the T1-retrieved locations. These findings suggest that RID leads to the formation of an additional memory trace that corresponds to a distorted variant of the same encoding event, which is strengthened alongside the original trace during sleep. More broadly, these data provide evidence for the importance of sleep in the preservation and adaptive updating of memories

    The benefits of targeted memory reactivation for consolidation in sleep are contingent on memory accuracy and direct cue-memory associations

    Get PDF
    Objectives: To investigate how the effects of targeted memory reactivation (TMR) are influenced by memory accuracy prior to sleep and the presence or absence of direct cue-memory associations. Methods: 30 participants associated each of 50 pictures with an unrelated word and then with a screen location in two separate tasks. During picture-location training, each picture was also presented with a semantically related sound. The sounds were therefore directly associated with the picture locations but indirectly associated with the words. During a subsequent nap, half of the sounds were replayed in slow wave sleep (SWS) (TMR). The effect of TMR on memory for the picture locations (direct cue-memory associations) and picture-word pairs (indirect cue-memory associations) was then examined. Results: TMR reduced overall memory decay for recall of picture locations. Further analyses revealed a benefit of TMR for picture locations recalled with a low degree of accuracy prior to sleep, but not those recalled with a high degree of accuracy. The benefit of TMR for low accuracy memories was predicted by time spent in SWS. There was no benefit of TMR for memory of the picture-word pairs, irrespective of memory accuracy prior to sleep. Conclusions: TMR provides the greatest benefit to memories recalled with a low degree of accuracy prior to sleep. The memory benefits of TMR may also be contingent on direct cue-memory associations

    Orthographic Consistency and Word-Frequency Effects in Auditory Word Recognition: New Evidence from Lexical Decision and Rime Detection

    Get PDF
    Many studies have repeatedly shown an orthographic consistency effect in the auditory lexical decision task. Words with phonological rimes that could be spelled in multiple ways (i.e., inconsistent words) typically produce longer auditory lexical decision latencies and more errors than do words with rimes that could be spelled in only one way (i.e., consistent words). These results have been extended to different languages and tasks, suggesting that the effect is quite general and robust. Despite this growing body of evidence, some psycholinguists believe that orthographic effects on spoken language are exclusively strategic, post-lexical, or restricted to peculiar (low-frequency) words. In the present study, we manipulated consistency and word-frequency orthogonally in order to explore whether the orthographic consistency effect extends to high-frequency words. Two different tasks were used: lexical decision and rime detection. Both tasks produced reliable consistency effects for both low- and high-frequency words. Furthermore, in Experiment 1 (lexical decision), an interaction revealed a stronger consistency effect for low-frequency words than for high-frequency words, as initially predicted by Ziegler and Ferrand (1998), whereas no interaction was found in Experiment 2 (rime detection). Our results extend previous findings by showing that the orthographic consistency effect is obtained not only for low-frequency words but also for high-frequency words. Furthermore, these effects were also obtained in a rime detection task, which does not require the explicit processing of orthographic structure. Globally, our results suggest that literacy changes the way people process spoken words, even for frequent words

    Sleep-dependent consolidation in children with comprehension and vocabulary weaknesses: it'll be alright on the night?

    Get PDF
    BACKGROUND: Vocabulary is crucial for an array of life outcomes and is frequently impaired in developmental disorders. Notably, 'poor comprehenders' (children with reading comprehension deficits but intact word reading) often have vocabulary deficits, but underlying mechanisms remain unclear. Prior research suggests intact encoding but difficulties consolidating new word knowledge. We test the hypothesis that poor comprehenders' sleep-associated vocabulary consolidation is compromised by their impoverished lexical-semantic knowledge. METHODS: Memory for new words was tracked across wake and sleep to assess encoding and consolidation in 8-to-12-year-old good and poor comprehenders. Each child participated in two sets of sessions, one beginning in the morning (AM-encoding) and the other in the evening (PM-encoding). In each case, they were taught 12 words and were trained on a spatial memory task. Memory was assessed immediately, 12- and 24-hr later via stem-completion, picture-naming, and definition tasks to probe different aspects of word knowledge. Long-term retention was assessed 1-2 months later. RESULTS: Recall of word-forms improved over sleep and postsleep wake, as measured in both stem-completion and picture-naming tasks. Counter to hypotheses, deficits for poor comprehenders were not observed in consolidation but instead were seen across measures and throughout testing, suggesting a deficit from encoding. Variability in vocabulary knowledge across the whole sample predicted sleep-associated consolidation, but only when words were learned early in the day and not when sleep followed soon after learning. CONCLUSIONS: Poor comprehenders showed weaker memory for new words than good comprehenders, but sleep-associated consolidation benefits were comparable between groups. Sleeping soon after learning had long-lasting benefits for memory and may be especially beneficial for children with weaker vocabulary. These results provide new insights into the breadth of poor comprehenders' vocabulary weaknesses, and ways in which learning might be better timed to remediate vocabulary difficulties

    Episodic memory and sleep are involved in the maintenance of context-specific lexical information

    Get PDF
    Familiar words come with a wealth of associated knowledge about their variety of usage, accumulated over a lifetime. How do we track and adjust this knowledge as new instances of a word are encountered? A recent study (Cognition) found that, for homonyms (e.g., bank), sleep-associated consolidation facilitates the updating of meaning dominance. Here, we tested the generality of this finding by exposing participants to (Experiment 1; N = 125) nonhomonyms (e.g., bathtub) in sentences that biased their meanings toward a specific interpretation (e.g., bathtub-slip vs. bathtub-relax), and (Experiment 2; N = 128) word-class ambiguous words (e.g., loan) in sentences where the words were used in their dispreferred word class (e.g., "He will loan me money"). Both experiments showed that such sentential experience influenced later interpretation and usage of the words more after a night's sleep than a day awake. We interpret these results as evidence for a general role of episodic memory in language comprehension such that new episodic memories are formed every time a sentence is comprehended, and these memories contribute to lexical processing next time the word is encountered, as well as potentially to the fine-tuning of long-term lexical knowledge. (PsycInfo Database Record (c) 2023 APA, all rights reserved)

    Contextual priming of word meanings is stabilized over sleep

    Get PDF
    Evidence is growing for the involvement of consolidation processes in the learning and retention of language, largely based on instances of new linguistic components (e.g., new words). Here, we assessed whether consolidation effects extend to the semantic processing of highly familiar words. The experiments were based on the word-meaning priming paradigm in which a homophone is encountered in a context that biases interpretation towards the subordinate meaning. The homophone is subsequently used in a word-association test to determine whether the priming encounter facilitates the retrieval of the primed meaning. In Experiment 1 (N = 74), we tested the resilience of priming over periods of 2 and 12 hours that were spent awake or asleep, and found that sleep periods were associated with stronger subsequent priming effects. In Experiment 2 (N = 55) we tested whether the sleep benefit could be explained in terms of a lack of retroactive interference by testing participants 24 hours after priming. Participants who had the priming encounter in the evening showed stronger priming effects after 24 hours than participants primed in the morning, suggesting that sleep makes priming resistant to interference during the following day awake. The results suggest that consolidation effects can be found even for highly familiar linguistic materials. We interpret these findings in terms of a contextual binding account in which all language perception provides a learning opportunity, with sleep and consolidation contributing to the updating of our expectations, ready for the next day

    Accent modulates access to word meaning: Evidence for a speaker-model account of spoken word recognition

    Get PDF
    Speech carries accent information relevant to determining the speaker’s linguistic and social background. A series of web-based experiments demonstrate that accent cues can modulate access to word meaning. In Experiments 1-3, British participants were more likely to retrieve the American dominant meaning (e.g., hat meaning of “bonnet”) in a word association task if they heard the words in an American than a British accent. In addition, results from a speeded semantic decision task (Experiment 4) and sentence comprehension task (Experiment 5) confirm that accent modulates on-line meaning retrieval such that comprehension of ambiguous words is easier when the relevant word meaning is dominant in the speaker’s dialect. Critically, neutral-accent speech items, created by morphing British- and American-accented recordings, were interpreted in a similar way to accented words when embedded in a context of accented words (Experiment 2). This finding indicates that listeners do not use accent to guide meaning retrieval on a word-by-word basis; instead they use accent information to determine the dialectic identity of a speaker and then use their experience of that dialect to guide meaning access for all words spoken by that person. These results motivate a speaker-model account of spoken word recognition in which comprehenders determine key characteristics of their interlocutor and use this knowledge to guide word meaning access
    corecore