1,844 research outputs found

    Markers of automaticity in sleep-associated consolidation of novel words

    Get PDF
    Two experiments investigated effects of sleep on consolidation and integration of novel form-meaning mappings using size congruity and semantic distance paradigms. Both paradigms have been used in previous studies to measure automatic access to word meanings. When participants compare semantic or physical font size of written word-pairs (e.g. BEE–COW), judgments are typically faster if relative sizes are congruent across both dimensions. Semantic distance effects are also found for wellestablished words, with semantic size judgements faster for pairs that differ substantially on this dimension. English-speaking participants learned novel form-meaning mappings with Mandarin (Experiment 1) or Malay (Experiment 2) words and were tested following overnight sleep or a similar duration awake. Judgements on English words controlled for circadian effects. The sleep group demonstrated selective stronger size congruity and semantic distance effects for novel word-pairs. This benefit occurred in Experiment 1 for semantic size comparisons of novel words, and in Experiment 2 on comparisons where novel pairs had large distances and font differences (for congruity effects) or in congruent trials (for semantic distance effects). Conversely, these effects were equivalent across sleep and wake for English words. Experiment 2 included polysomnography data and revealed that changes in the strength of semantic distance and congruity effects were positively correlated with slow-wave sleep and sleep spindles respectively. These findings support systems consolidation accounts of declarative learning and suggest that sleep plays an active role in integrating new words with existing knowledge, resulting in increased automatic access of the acquired knowledge

    Flow of evaporating, gravity-driven thin liquid films over topography

    Get PDF
    The effect of topography on the free surface and solvent concentration profiles of an evaporating thin film of liquid flowing down an inclined plane is considered. The liquid is assumed to be composed of a resin dissolved in a volatile solvent with the associated solvent concentration equation derived on the basis of the well-mixed approximation. The dynamics of the film is formulated as a lubrication approximation and the effect of a composition-dependent viscosity is included in the model. The resulting time-dependent, nonlinear, coupled set of governing equations is solved using a full approximation storage multigrid method. The approach is first validated against a closed-form analytical solution for the case of a gravity-driven, evaporating thin film flowing down a flat substrate. Analysis of the results for a range of topography shapes reveal that although a full-width, spanwise topography such as a step-up or a step-down does not affect the composition of the film, the same is no longer true for the case of localized topography, such as a peak or a trough, for which clear nonuniformities of the solvent concentration profile can be observed in the wake of the topography

    Hole polaron formation and migration in olivine phosphate materials

    Full text link
    By combining first principles calculations and experimental XPS measurements, we investigate the electronic structure of potential Li-ion battery cathode materials LiMPO4 (M=Mn,Fe,Co,Ni) to uncover the underlying mechanisms that determine small hole polaron formation and migration. We show that small hole polaron formation depends on features in the electronic structure near the valence-band maximum and that, calculationally, these features depend on the methodology chosen for dealing with the correlated nature of the transition-metal d-derived states in these systems. Comparison with experiment reveals that a hybrid functional approach is superior to GGA+U in correctly reproducing the XPS spectra. Using this approach we find that LiNiPO4 cannot support small hole polarons, but that the other three compounds can. The migration barrier is determined mainly by the strong or weak bonding nature of the states at the top of the valence band, resulting in a substantially higher barrier for LiMnPO4 than for LiCoPO4 or LiFePO4

    A combined experimental and computational fluid dynamics analysis of the dynamics of drop formation

    Get PDF
    This article presents a complementary experimental and computational investigation of the effect of viscosity and flowrate on the dynamics of drop formation in the dripping mode. In contrast to previous studies, numerical simulations are performed with two popular commercial computational fluid dynamics (CFD) packages, CFX and FLOW-3D, both of which employ the volume of fluid (VOF) method. Comparison with previously published experimental and computational data and new experimental results reported here highlight the capabilities and limitations of the aforementioned packages

    Confirmation of saturation equilibrium conditions in crater populations

    Get PDF
    We have continued work on realistic numerical models of cratered surfaces, as first reported at last year's LPSC. We confirm the saturation equilibrium level with a new, independent test. One of us has developed a realistic computer simulation of a cratered surface. The model starts with a smooth surface or fractal topography, and adds primary craters according to the cumulative power law with exponent -1.83, as observed on lunar maria and Martian plains. Each crater has an ejecta blanket with the volume of the crater, feathering out to a distance of 4 crater radii. We use the model to test the levels of saturation equilibrium reached in naturally occurring systems, by increasing crater density and observing its dependence on various parameters. In particular, we have tested to see if these artificial systems reach the level found by Hartmann on heavily cratered planetary surfaces, hypothesized to be the natural saturation equilibrium level. This year's work gives the first results of a crater population that includes secondaries. Our model 'Gaskell-4' (September, 1992) includes primaries as described above, but also includes a secondary population, defined by exponent -4. We allowed the largest secondary from each primary to be 0.10 times the size of the primary. These parameters will be changed to test their effects in future models. The model gives realistic images of a cratered surface although it appears richer in secondaries than real surfaces are. The effect of running the model toward saturation gives interesting results for the diameter distribution. Our most heavily cratered surface had the input number of primary craters reach about 0.65 times the hypothesized saturation equilibrium, but the input number rises to more than 100 times that level for secondaries below 1.4 km in size

    First-principles prediction of a decagonal quasicrystal containing boron

    Full text link
    We interpret experimentally known B-Mg-Ru crystals as quasicrystal approximants. These approximant structures imply a deterministic decoration of tiles by atoms that can be extended quasiperiodically. Experimentally observed structural disorder corresponds to phason (tile flip) fluctuations. First-principles total energy calculations reveal that many distinct tilings lie close to stability at low temperatures. Transfer matrix calculations based on these energies suggest a phase transition from a crystalline state at low temperatures to a high temperature state characterized by tile fluctuations. We predict B38_{38}Mg17_{17}Ru45_{45} forms a decagonal quasicrystal that is metastable at low temperatures and may be thermodynamically stable at high temperatures.Comment: 4 pages, 3 figures, submitted to Phys. Rev. Let

    Listeria Monocytogenes: a rare cause of endophthalmitis, a case report.

    Get PDF
    Listeria monocytogenes is a known cause of gastroenteritis. Invasive disease can follow bacteremia causing meningoencephalitis, endocarditis and spontaneous miscarriages in immunocompromised patients and pregnant women respectively. We present the first case in England of endogenous endophthalmitis caused by L. monocytogenes following acute gastroenteritis in an immunocompetent host. A 50-year-old South Asian female presented with acute painful unilateral visual loss occurring shortly after an episode of self-limiting gastroenteritis. On examination, the eye was very inflamed with a hypopyon uveitis. A vitreous biopsy confirmed growth of L.monocytogenes serotype 1/2a. Diagnostic delay commonly occurs in endogenous endophthalmitis and exacerbates an already poor visual prognosis. Listeria spp. must be considered in ocular inflammation following gastroenteritis. The intraocular inflammation subsided but surgical intervention was required to remove vitreous debris and improve visual acuity

    Mismatch between suspected pyelonephritis and microbiological diagnosis: a cohort study from a UK teaching hospital.

    Get PDF
    Urinary tract infections are a common reason for prescribing empirical antibiotics in the emergency department. This study investigated the role of microbiological culture and urinalysis in the diagnosis of pyelonephritis by extracting data on 105 patients with a clinical diagnosis of pyelonephritis at a London teaching hospital. In total, 99 of 102 patients were treated empirically with intravenous antibiotics, but only 55 of 100 patients who were sampled had microbiological evidence of infection in urine and/or blood. Almost half (10/21) of the patients with a negative urine dipstick test had a positive urine culture. Diagnostic uncertainty in this context undoubtedly drives inappropriate antibiotic use

    Higher order glass-transition singularities in colloidal systems with attractive interactions

    Get PDF
    The transition from a liquid to a glass in colloidal suspensions of particles interacting through a hard core plus an attractive square-well potential is studied within the mode-coupling-theory framework. When the width of the attractive potential is much shorter than the hard-core diameter, a reentrant behavior of the liquid-glass line, and a glass-glass-transition line are found in the temperature-density plane of the model. For small well-width values, the glass-glass-transition line terminates in a third order bifurcation point, i.e. in a A_3 (cusp) singularity. On increasing the square-well width, the glass-glass line disappears, giving rise to a fourth order A_4 (swallow-tail) singularity at a critical well width. Close to the A_3 and A_4 singularities the decay of the density correlators shows stretching of huge dynamical windows, in particular logarithmic time dependence.Comment: 19 pages, 12 figures, Phys. Rev. E, in prin
    corecore