research

First-principles prediction of a decagonal quasicrystal containing boron

Abstract

We interpret experimentally known B-Mg-Ru crystals as quasicrystal approximants. These approximant structures imply a deterministic decoration of tiles by atoms that can be extended quasiperiodically. Experimentally observed structural disorder corresponds to phason (tile flip) fluctuations. First-principles total energy calculations reveal that many distinct tilings lie close to stability at low temperatures. Transfer matrix calculations based on these energies suggest a phase transition from a crystalline state at low temperatures to a high temperature state characterized by tile fluctuations. We predict B38_{38}Mg17_{17}Ru45_{45} forms a decagonal quasicrystal that is metastable at low temperatures and may be thermodynamically stable at high temperatures.Comment: 4 pages, 3 figures, submitted to Phys. Rev. Let

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 01/04/2019