198 research outputs found

    Evidence for a protein tether involved in somatic touch

    Get PDF
    The gating of ion channels by mechanical force underlies the sense of touch and pain. The mode of gating of mechanosensitive ion channels in vertebrate touch receptors is unknown. Here we show that the presence of a protein link is necessary for the gating of mechanosensitive currents in all low-threshold mechanoreceptors and some nociceptors of the dorsal root ganglia (DRG). Using TEM, we demonstrate that a protein filament with of length ∼100 nm is synthesized by sensory neurons and may link mechanosensitive ion channels in sensory neurons to the extracellular matrix. Brief treatment of sensory neurons with non-specific and site-specific endopeptidases destroys the protein tether and abolishes mechanosensitive currents in sensory neurons without affecting electrical excitability. Protease-sensitive tethers are also required for touch-receptor function in vivo. Thus, unlike the majority of nociceptors, cutaneous mechanoreceptors require a distinct protein tether to transduce mechanical stimuli

    A Probabilistic Model for Estimating the Depth and Threshold Temperature of C-fiber Nociceptors

    Get PDF
    The subjective experience of thermal pain follows the detection and encoding of noxious stimuli by primary afferent neurons called nociceptors. However, nociceptor morphology has been hard to access and the mechanisms of signal transduction remain unresolved. In order to understand how heat transducers in nociceptors are activated in vivo, it is important to estimate the temperatures that directly activate the skin-embedded nociceptor membrane. Hence, the nociceptor’s temperature threshold must be estimated, which in turn will depend on the depth at which transduction happens in the skin. Since the temperature at the receptor cannot be accessed experimentally, such an estimation can currently only be achieved through modeling. However, the current state-of-the-art model to estimate temperature at the receptor suffers from the fact that it cannot account for the natural stochastic variability of neuronal responses. We improve this model using a probabilistic approach which accounts for uncertainties and potential noise in system. Using a data set of 24 C-fibers recorded in vitro, we show that, even without detailed knowledge of the bio-thermal properties of the system, the probabilistic model that we propose here is capable of providing estimates of threshold and depth in cases where the classical method fails

    The significance and expectations of HIV cure research among people living with HIV in Australia.

    Get PDF
    Most people living with HIV (PLHIV) with reliable access to antiretroviral treatment (ART) have a life expectancy similar to uninfected populations. Despite this, HIV can negatively affect their social and psychological wellbeing. This study aimed to enhance understanding of the expectations PLHIV hold for HIV cure research and the implications this has for HIV cure research trials. We interviewed 20 Australian PLHIV about their expectations for HIV cure research outcomes and the impact a potential cure for HIV may have on their everyday lives. Data were analysed thematically, using both inductive and deductive approaches. The significance of a cure for HIV was expressed by participants as something that would offer relief from their sense of vigilance or uncertainty about their health into the future. A cure was also defined in social terms, as alleviation from worry about potential for onward HIV transmission, concerns for friends and family, and the negative impact of HIV-related stigma. Participants did not consider sustained medication-free viral suppression (or remission) as a cure for HIV because this did not offer certainty in remaining virus free in a way that would alleviate these fears and concerns. A cure was seen as complete elimination of HIV from the body. There is an ethical need to consider the expectations of PLHIV in design of, and recruitment for, HIV cure-related research. The language used to describe HIV cure research should differentiate the long-term aspiration of achieving complete elimination of HIV from the body and possible shorter-term therapeutic advances, such as achieving medication free viral suppression

    Regulation of ASIC channels by a stomatin/STOML3 complex located in a mobile vesicle pool in sensory neurons

    Get PDF
    A complex of stomatin-family proteins and acid-sensing (proton-gated) ion channel (ASIC) family members participate in sensory transduction in invertebrates and vertebrates. Here, we have examined the role of the stomatin-family protein stomatin-like protein-3 (STOML3) in this process. We demonstrate that STOML3 interacts with stomatin and ASIC subunits and that this occurs in a highly mobile vesicle pool in dorsal root ganglia (DRG) neurons and Chinese hamster ovary cells. We identify a hydrophobic region in the N-terminus of STOML3 that is required for vesicular localization of STOML3 and regulates physical and functional interaction with ASICs. We further characterize STOML3-containing vesicles in DRG neurons and show that they are Rab11-positive, but not part of the early-endosomal, lysosomal or Rab14-dependent biosynthetic compartment. Moreover, uncoupling of vesicles from microtubules leads to incorporation of STOML3 into the plasma membrane and increased acid-gated currents. Thus, STOML3 defines a vesicle pool in which it associates with molecules that have critical roles in sensory transduction. We suggest that the molecular features of this vesicular pool may be characteristic of a ‘transducosome’ in sensory neurons

    Functional neurokinin and NMDA receptor activity in an animal naturally lacking substance P: the naked mole-rat.

    Get PDF
    Naked mole-rats are extremely unusual among mammals in that their cutaneous C-fibers lack the neuropeptide Substance P (SP). In other mammals, SP plays an important role in nociception: it is released from C-fibers onto spinal neurons where it facilitates NMDA receptor activity and causes sensitization that can last for minutes, hours or days. In the present study, we tested the effects of intrathecal application of: 1) SP, 2) an SP antagonist (GR-82334), and 3) an NMDA antagonist (APV) on heat-evoked foot withdrawal. In the naked mole-rat, at a high enough concentration, application of SP caused a large, immediate, and long-lasting sensitization of foot withdrawal latency that was transiently reversed by application of either antagonist. However, neither SP nor NMDA antagonists had an effect when administered alone to naïve animals. In contrast, both antagonists induced an increase in basal withdrawal latency in mice. These results indicate that spinal neurons in naked mole-rats have functional SP and NMDA receptors, but that these receptors do not participate in heat-evoked foot withdrawal unless SP is experimentally introduced. We propose that the natural lack of SP in naked mole-rat C-fibers may have resulted during adaptation to living in a chronically high carbon dioxide, high ammonia environment that, in other mammals, would stimulate C-fibers and evoke nocifensive behavior.This work was supported by National Science Foundation grant 0744979, Sonderforschungsbereich 665, and the Alexander von Humboldt Foundation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Peripheral sensitisation of nociceptors via G-proteindependent potentiation of mechanotransduction currents

    Get PDF
    Mechanical stimuli impinging on the skin are converted into electrical signals by mechanically gated ion channels located at the peripheral nerve endings of dorsal root ganglion (DRG) neurons. Under inflammatory conditions sensory neurons are commonly sensitised to mechanical stimuli; a putative mechanism that may contribute to such sensitisation of sensory neurons is enhanced responsiveness of mechanotransduction ion channels. Here we show that the algogens UTP and ATP potentiate mechanosensitive RA currents in peptidergic nociceptive DRG neurons and reduce thresholds for mechanically induced action potential firing in these neurones. Pharmacological characterisation suggests that this effect is mediated by the Gq-coupled P2Y2 nucleotide receptor. Moreover, using the in vitro skin nerve technique, we show that UTP also increases action potential firing rates in response to mechanical stimuli in a subpopulation of skin C-fibre nociceptors. Together our findings suggest that UTP sensitises a subpopulation of cutaneous C-fibre nociceptors via a previously undescribed G-protein-dependent potentiation of mechanically activated RA-type currents

    A Role for STOML3 in Olfactory Sensory Transduction

    Get PDF
    Stomatin-like protein-3 (STOML3) is an integral membrane protein expressed in the cilia of olfactory sensory neurons, but its functional role in this cell type has never been addressed. STOML3 is also expressed in dorsal root ganglia neurons, where it has been shown to be required for normal touch sensation. Here, we extended previous results indicating that STOML3 is mainly expressed in the knob and proximal cilia of olfactory sensory neurons. We additionally showed that mice lacking STOML3 have a morphologically normal olfactory epithelium. Due to its presence in the cilia, together with known olfactory transduction components, we hypothesized that STOML3 could be involved in modulating odorant responses in olfactory sensory neurons. To investigate the functional role of STOML3, we performed loose patch recordings from wild type and Stoml3 KO olfactory sensory neurons. We found that spontaneous mean firing activity was lower with additional shift in interspike intervals distributions in Stoml3 KOs compared to wild type neurons. Moreover, the firing activity in response to stimuli was reduced both in spike number and duration in neurons lacking STOML3 compared to wildtype neurons. Control experiments suggested that the primary deficit in neurons lacking STOML3 was at the level of transduction and not at the level of action potential generation. We conclude that STOML3 has a physiological role in olfaction, being required for normal sensory encoding by olfactory sensory neurons.Significance Statement Olfactory transduction comprises a series of well-characterized molecular steps that take place in the cilia of olfactory sensory neurons (OSNs) terminating in action potential firing. Here, we introduce a possible new player: stomatin-like protein 3 (STOML3). Indeed, STOML3 is localized in olfactory cilia, and we show that STOML3 plays a role in OSN physiology. First, it allows OSNs to broaden the possible frequency range of their spontaneous activity. Second, STOML3 modulates odorant-evoked action potential firing by regulating both the number of spikes and response duration. These new findings call for a reconsideration of the patterns of the peripheral coding of sensory stimuli

    Hypofunctional TrkA Accounts for the Absence of Pain Sensitization in the African Naked Mole-Rat.

    Get PDF
    The naked mole-rat is a subterranean rodent lacking several pain behaviors found in humans, rats, and mice. For example, nerve growth factor (NGF), an important mediator of pain sensitization, fails to produce thermal hyperalgesia in naked mole-rats. The sensitization of capsaicin-sensitive TRPV1 ion channels is necessary for NGF-induced hyperalgesia, but naked mole-rats have fully functional TRPV1 channels. We show that exposing isolated naked mole-rat nociceptors to NGF does not sensitize TRPV1. However, the naked mole-rat NGF receptor TrkA displays a reduced ability to engage signal transduction pathways that sensitize TRPV1. Between one- and three-amino-acid substitutions in the kinase domain of the naked mole-rat TrkA are sufficient to render the receptor hypofunctional, and this is associated with the absence of heat hyperalgesia. Our data suggest that evolution has selected for a TrkA variant that abolishes a robust nociceptive behavior in this species but is still compatible with species fitness.This work was supported by a European Research Council grant (grant 294678 Extremeophile Mammal) to G.R.L. E.S.J.S. acknowledges support from the Alexander von Humboldt foundation.This is the final version of the article. It first appeared from Elsevier (Cell Press) via https://doi.org/10.1016/j.celrep.2016.09.03
    corecore