242 research outputs found
Evidence for a protein tether involved in somatic touch
The gating of ion channels by mechanical force underlies the sense of touch and pain. The mode of gating of mechanosensitive ion channels in vertebrate touch receptors is unknown. Here we show that the presence of a protein link is necessary for the gating of mechanosensitive currents in all low-threshold mechanoreceptors and some nociceptors of the dorsal root ganglia (DRG). Using TEM, we demonstrate that a protein filament with of length ∼100 nm is synthesized by sensory neurons and may link mechanosensitive ion channels in sensory neurons to the extracellular matrix. Brief treatment of sensory neurons with non-specific and site-specific endopeptidases destroys the protein tether and abolishes mechanosensitive currents in sensory neurons without affecting electrical excitability. Protease-sensitive tethers are also required for touch-receptor function in vivo. Thus, unlike the majority of nociceptors, cutaneous mechanoreceptors require a distinct protein tether to transduce mechanical stimuli
A Probabilistic Model for Estimating the Depth and Threshold Temperature of C-fiber Nociceptors
The subjective experience of thermal pain follows the detection and encoding
of noxious stimuli by primary afferent neurons called nociceptors. However,
nociceptor morphology has been hard to access and the mechanisms of signal
transduction remain unresolved. In order to understand how heat transducers in
nociceptors are activated in vivo, it is important to estimate the
temperatures that directly activate the skin-embedded nociceptor membrane.
Hence, the nociceptor’s temperature threshold must be estimated, which in turn
will depend on the depth at which transduction happens in the skin. Since the
temperature at the receptor cannot be accessed experimentally, such an
estimation can currently only be achieved through modeling. However, the
current state-of-the-art model to estimate temperature at the receptor suffers
from the fact that it cannot account for the natural stochastic variability of
neuronal responses. We improve this model using a probabilistic approach which
accounts for uncertainties and potential noise in system. Using a data set of
24 C-fibers recorded in vitro, we show that, even without detailed knowledge
of the bio-thermal properties of the system, the probabilistic model that we
propose here is capable of providing estimates of threshold and depth in cases
where the classical method fails
Photoswitchable fatty acids enable optical control of TRPV1
Fatty acids (FAs) are not only essential components of cellular energy storage and structure, but play crucial roles in signalling. Here we present a toolkit of photoswitchable FA analogues (FAAzos) that incorporate an azobenzene photoswitch along the FA chain. By modifying the FAAzos to resemble capsaicin, we prepare a series of photolipids targeting the Vanilloid Receptor 1 (TRPV1),a non-selective cation channel known for its role in nociception. Several azo-capsaicin derivatives (AzCAs) emerge as photoswitchable agonists of TRPV1 that are relatively inactive in the dark and become active on irradiation with ultraviolet-A light. This effect can be rapidly reversed by irradiation with blue light and permits the robust optical control of dorsal root ganglion neurons and C-fibre nociceptors with precision timing and kinetics not available with any other technique. More generally, we expect that photolipids will find many applications in controlling biological pathways that rely on protein-lipid interactions
Recommended from our members
Independent evolution of pain insensitivity in African mole-rats: origins and mechanisms
Abstract: The naked mole-rat (Heterocephalus glaber) is famous for its longevity and unusual physiology. This eusocial species that lives in highly ordered and hierarchical colonies with a single breeding queen, also discovered secrets enabling somewhat pain-free living around 20 million years ago. Unlike most mammals, naked mole-rats do not feel the burn of chili pepper’s active ingredient, capsaicin, nor the sting of acid. Indeed, by accumulating mutations in genes encoding proteins that are only now being exploited as targets for new pain therapies (the nerve growth factor receptor TrkA and voltage-gated sodium channel, NaV1.7), this species mastered the art of analgesia before humans evolved. Recently, we have identified pain insensitivity as a trait shared by several closely related African mole-rat species. One of these African mole-rats, the Highveld mole-rat (Cryptomys hottentotus pretoriae), is uniquely completely impervious and pain free when confronted with electrophilic compounds that activate the TRPA1 ion channel. The Highveld mole-rat has evolved a biophysical mechanism to shut down the activation of sensory neurons that drive pain. In this review, we will show how mole-rats have evolved pain insensitivity as well as discussing what the proximate factors may have been that led to the evolution of pain-free traits
Recommended from our members
Independent evolution of pain insensitivity in African mole-rats: origins and mechanisms
Abstract: The naked mole-rat (Heterocephalus glaber) is famous for its longevity and unusual physiology. This eusocial species that lives in highly ordered and hierarchical colonies with a single breeding queen, also discovered secrets enabling somewhat pain-free living around 20 million years ago. Unlike most mammals, naked mole-rats do not feel the burn of chili pepper’s active ingredient, capsaicin, nor the sting of acid. Indeed, by accumulating mutations in genes encoding proteins that are only now being exploited as targets for new pain therapies (the nerve growth factor receptor TrkA and voltage-gated sodium channel, NaV1.7), this species mastered the art of analgesia before humans evolved. Recently, we have identified pain insensitivity as a trait shared by several closely related African mole-rat species. One of these African mole-rats, the Highveld mole-rat (Cryptomys hottentotus pretoriae), is uniquely completely impervious and pain free when confronted with electrophilic compounds that activate the TRPA1 ion channel. The Highveld mole-rat has evolved a biophysical mechanism to shut down the activation of sensory neurons that drive pain. In this review, we will show how mole-rats have evolved pain insensitivity as well as discussing what the proximate factors may have been that led to the evolution of pain-free traits
The significance and expectations of HIV cure research among people living with HIV in Australia.
Most people living with HIV (PLHIV) with reliable access to antiretroviral treatment (ART) have a life expectancy similar to uninfected populations. Despite this, HIV can negatively affect their social and psychological wellbeing. This study aimed to enhance understanding of the expectations PLHIV hold for HIV cure research and the implications this has for HIV cure research trials. We interviewed 20 Australian PLHIV about their expectations for HIV cure research outcomes and the impact a potential cure for HIV may have on their everyday lives. Data were analysed thematically, using both inductive and deductive approaches. The significance of a cure for HIV was expressed by participants as something that would offer relief from their sense of vigilance or uncertainty about their health into the future. A cure was also defined in social terms, as alleviation from worry about potential for onward HIV transmission, concerns for friends and family, and the negative impact of HIV-related stigma. Participants did not consider sustained medication-free viral suppression (or remission) as a cure for HIV because this did not offer certainty in remaining virus free in a way that would alleviate these fears and concerns. A cure was seen as complete elimination of HIV from the body. There is an ethical need to consider the expectations of PLHIV in design of, and recruitment for, HIV cure-related research. The language used to describe HIV cure research should differentiate the long-term aspiration of achieving complete elimination of HIV from the body and possible shorter-term therapeutic advances, such as achieving medication free viral suppression
Regulation of ASIC channels by a stomatin/STOML3 complex located in a mobile vesicle pool in sensory neurons
A complex of stomatin-family proteins and acid-sensing (proton-gated) ion channel (ASIC) family members participate in sensory transduction in invertebrates and vertebrates. Here, we have examined the role of the stomatin-family protein stomatin-like protein-3 (STOML3) in this process. We demonstrate that STOML3 interacts with stomatin and ASIC subunits and that this occurs in a highly mobile vesicle pool in dorsal root ganglia (DRG) neurons and Chinese hamster ovary cells. We identify a hydrophobic region in the N-terminus of STOML3 that is required for vesicular localization of STOML3 and regulates physical and functional interaction with ASICs. We further characterize STOML3-containing vesicles in DRG neurons and show that they are Rab11-positive, but not part of the early-endosomal, lysosomal or Rab14-dependent biosynthetic compartment. Moreover, uncoupling of vesicles from microtubules leads to incorporation of STOML3 into the plasma membrane and increased acid-gated currents. Thus, STOML3 defines a vesicle pool in which it associates with molecules that have critical roles in sensory transduction. We suggest that the molecular features of this vesicular pool may be characteristic of a ‘transducosome’ in sensory neurons
Functional neurokinin and NMDA receptor activity in an animal naturally lacking substance P: the naked mole-rat.
Naked mole-rats are extremely unusual among mammals in that their cutaneous C-fibers lack the neuropeptide Substance P (SP). In other mammals, SP plays an important role in nociception: it is released from C-fibers onto spinal neurons where it facilitates NMDA receptor activity and causes sensitization that can last for minutes, hours or days. In the present study, we tested the effects of intrathecal application of: 1) SP, 2) an SP antagonist (GR-82334), and 3) an NMDA antagonist (APV) on heat-evoked foot withdrawal. In the naked mole-rat, at a high enough concentration, application of SP caused a large, immediate, and long-lasting sensitization of foot withdrawal latency that was transiently reversed by application of either antagonist. However, neither SP nor NMDA antagonists had an effect when administered alone to naïve animals. In contrast, both antagonists induced an increase in basal withdrawal latency in mice. These results indicate that spinal neurons in naked mole-rats have functional SP and NMDA receptors, but that these receptors do not participate in heat-evoked foot withdrawal unless SP is experimentally introduced. We propose that the natural lack of SP in naked mole-rat C-fibers may have resulted during adaptation to living in a chronically high carbon dioxide, high ammonia environment that, in other mammals, would stimulate C-fibers and evoke nocifensive behavior.This work was supported by National Science Foundation grant 0744979, Sonderforschungsbereich 665, and the Alexander von Humboldt Foundation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
- …