36 research outputs found

    Biochemical Assessment of Stress in Cardiac Tissue in Response to Weightless Space Travel

    Get PDF
    The absence of unit gravity may cause physiological changes in the cardiovascular system. For instance, in the absence of Earth's gravity, venous return to the heart may increase due, in pan, to decreased pooling of the blood in the extremities. We hypothesize that this would produce an increase in the heart's work load ultimately resulting in hypertrophy

    Angiotensin II Enhances Adenylyl Cyclase Signaling via Ca2+/Calmodulin. Gq-Gs Cross-Talk Regulates Collagen Production in Cardiac Fibroblasts

    Get PDF
    Cardiac fibroblasts regulate formation of extracellular matrix in the heart, playing key roles in cardiac remodeling and hypertrophy. In this study, we sought to characterize cross-talk between Gq and Gs signaling pathways and its impact on modulating collagen synthesis by cardiac fibroblasts. Angiotensin II (ANG II) activates cell proliferation and collagen synthesis but also potentiates cyclic AMP (cAMP) production stimulated by Ξ²-adrenergic receptors (Ξ²-AR). The potentiation of Ξ²-AR-stimulated cAMP production by ANG II is reduced by phospholipase C inhibition and enhanced by overexpression of Gq. Ionomycin and thapsigargin increased intracellular Ca2+ levels and potentiated isoproterenol- and forskolin-stimulated cAMP production, whereas chelation of Ca2+ with 1,2-bis(2-aminophenoxy)ethane-N,N,Nβ€², Nβ€²-tetraacetic acid/AM inhibited such potentiation. Inhibitors of tyrosine kinases, protein kinase C, or GΞ²Ξ³ did not alter this cross-talk. Immunoblot analyses showed prominent expression of adenylyl cyclase 3 (AC3), a Ca2+-activated isoform, along with AC2, AC4, AC5, AC6, and AC7. Of those isoforms, only AC3 and AC5/6 proteins were detected in caveolin-rich fractions. Overexpression of AC6 increased Ξ²AR-stimulated cAMP accumulation but did not alter the size of the ANG II potentiation, suggesting that the cross-talk is AC isoform-specific. Isoproterenol-mediated inhibition of serum-stimulated collagen synthesis increased from 31 to 48% in the presence of ANG II, indicating that Ξ²AR-regulated collagen synthesis increased in the presence of ANG II. These data indicate that ANG II potentiates cAMP formation via Ca2+-dependent activation of AC activity, which in turn attenuates collagen synthesis and demonstrates one functional consequence of cross-talk between Gq and Gs signaling pathways in cardiac fibroblasts

    TRPV4 channel activation selectively inhibits tumor endothelial cell proliferation

    Get PDF
    Endothelial cell proliferation is a critical event during angiogenesis, regulated by both soluble factors and mechanical forces. Although the proliferation of tumor cells is studied extensively, little is known about the proliferation of tumor endothelial cells (TEC) and its contribution to tumor angiogenesis. We have recently shown that reduced expression of the mechanosensitive ion channel TRPV4 in TEC causes aberrant mechanosensitivity that result in abnormal angiogenesis. Here, we show that TEC display increased proliferation compared to normal endothelial cells (NEC). Further, we found that TEC exhibit high basal ERK1/2 phosphorylation and increased expression of proliferative genes important in the G1/S phase of the cell cycle. Importantly, pharmacological activation of TRPV4, with a small molecular activator GSK1016790A (GSK), significantly inhibited TEC proliferation, but had no effect on the proliferation of NEC or the tumor cells (epithelial) themselves. This reduction in TEC proliferation by TRPV4 activation was correlated with a decrease in high basal ERK1/2 phosphorylation. Finally, using a syngeneic tumor model revealed that TRPV4 activation, with GSK, significantly reduced endothelial cell proliferation in vivo. Our findings suggest that TRPV4 channels regulate tumor angiogenesis by selectively inhibiting tumor endothelial cell proliferation

    PoGOLite - A High Sensitivity Balloon-Borne Soft Gamma-ray Polarimeter

    Full text link
    We describe a new balloon-borne instrument (PoGOLite) capable of detecting 10% polarisation from 200mCrab point-like sources between 25 and 80keV in one 6 hour flight. Polarisation measurements in the soft gamma-ray band are expected to provide a powerful probe into high-energy emission mechanisms as well as the distribution of magnetic fields, radiation fields and interstellar matter. At present, only exploratory polarisation measurements have been carried out in the soft gamma-ray band. Reduction of the large background produced by cosmic-ray particles has been the biggest challenge. PoGOLite uses Compton scattering and photo-absorption in an array of 217 well-type phoswich detector cells made of plastic and BGO scintillators surrounded by a BGO anticoincidence shield and a thick polyethylene neutron shield. The narrow FOV (1.25msr) obtained with well-type phoswich detector technology and the use of thick background shields enhance the detected S/N ratio. Event selections based on recorded phototube waveforms and Compton kinematics reduce the background to that expected for a 40-100mCrab source between 25 and 50keV. A 6 hour observation on the Crab will differentiate between the Polar Cap/Slot Gap, Outer Gap, and Caustic models with greater than 5 sigma; and also cleanly identify the Compton reflection component in the Cygnus X-1 hard state. The first flight is planned for 2010 and long-duration flights from Sweden to Northern Canada are foreseen thereafter.Comment: 11 pages, 11 figures, 2 table

    A cell culture model using rat coronary artery adventitial fibroblasts to measure collagen production

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We have developed a rat cell model for studying collagen type I production in coronary artery adventitial fibroblasts. Increased deposition of adventitial collagen type I leads to stiffening of the blood vessel, increased blood pressure, arteriosclerosis and coronary heart disease. Although the source and mechanism of collagen deposition is yet unknown, the adventitia appears to play a significant role. To demonstrate the application of our cell model, cultured adventitial fibroblasts were treated with sex hormones and the effect on collagen production measured.</p> <p>Methods</p> <p>Hearts (10–12 weeks) were harvested and the left anterior descending coronary artery (LAD) was isolated and removed. Tissue explants were cultured and cells (passages 2–4) were confirmed as fibroblasts using immunohistochemistry. Optimal conditions were determined for cell tissue harvest, timing, proliferation and culture conditions. Fibroblasts were exposed to 10<sup>-7 </sup>M testosterone or 10<sup>-7 </sup>M estrogen for 24 hours and either immunostained for collagen type I or subjected to ELISA.</p> <p>Results</p> <p>Results showed increased collagen staining in fibroblasts treated with testosterone compared to control and decreased staining with estrogen. ELISA results showed that testosterone increased collagen I by 20% whereas estrogen decreased collagen I by 15%.</p> <p>Conclusion</p> <p>Data demonstrates the usefulness of our cell model in studying the specific role of the adventitia apart from other blood vessel tissue in rat coronary arteries. Results suggest opposite effects of testosterone and estrogen on collagen synthesis in the rat coronary artery adventitial fibroblasts.</p

    Molecular Characterization of a Novel Intracellular ADP-Ribosyl Cyclase

    Get PDF
    Background. ADP-ribosyl cyclases are remarkable enzymes capable of catalyzing multiple reactions including the synthesis of the novel and potent intracellular calcium mobilizing messengers, cyclic ADP-ribose and NAADP. Not all ADP-ribosyl cyclases however have been characterized at the molecular level. Moreover, those that have are located predominately at the outer cell surface and thus away from their cytosolic substrates. Methodology/Principal Findings. Here we report the molecular cloning of a novel expanded family of ADP-ribosyl cyclases from the sea urchin, an extensively used model organism for the study of inositol trisphosphate-independent calcium mobilization. We provide evidence that one of the isoforms (SpARC1) is a soluble protein that is targeted exclusively to the endoplasmic reticulum lumen when heterologously expressed. Catalytic activity of the recombinant protein was readily demonstrable in crude cell homogenates, even under conditions where luminal continuity was maintained. Conclusions/Significance. Our data reveal a new intracellular location for ADP-ribosyl cyclases and suggest that production of calcium mobilizing messengers may be compartmentalized

    Characterization of calcium signaling mechanisms in osteoblasts

    No full text
    Bone remodeling is controlled by the osteoclast, which resorbs bone, and the osteoblast, which synthesizes and secretes proteins that are eventually mineralized into bone. Ca\sp{2+} homeostasis and signaling contribute to the function of nearly all cell types, and understanding both in the osteoblast is of importance given its secretory properties and interaction with osteoclasts. This study was undertaken to identify and investigate the physiology of the Ca\sp{2+} signaling mechanisms present in osteoblasts. The Ca\sp{2+} pumps, stores and channels present in osteoblasts were studied. RT-PCR cloning revealed that osteoblast-like cells express PMCA1b, an alternatively spliced transcript of the plasma membrane Ca\sp{2+}-ATPase. The PMCA1b isoform contains a consensus phosphorylation site for cAMP-dependent protein kinase A and a modified calmodulin binding domain. The regulation of osteoblast function by agents that act via cAMP-mediated pathways may involve alterations in the activity of the plasma membrane Ca\sp{2+}-ATPase. Calcium release from intracellular stores is a signaling mechanism used universally by cells responding to hormones and growth factors, and the compartmentalization and regulated release of calcium is cell-type specific. Fura-2 was employed to monitor intracellular Ca\sp{2+}. Thapsigargin and 2,5,-di-(tert-butyl)-1,4-benzohydroquinone (tBuHQ), two inhibitors of endoplasmic reticulum Ca\sp{2+}-ATPase activity, both emptied a single intracellular calcium pool which was released in response to either ATP or thrombin, identifying it as the inositol 1,4,5-trisphosphate-sensitive calcium store. The Ca\sp{2+} storage system present in osteoblasts is typical of a non-excitable cell type, despite these cells sharing characteristics of excitable cells such as voltage-sensitive Ca\sp{2+} channels (VSCCs). VSCCs are important cell surface regulators of membrane permeability to Ca\sp{2+}. In non-excitable cells VSCCs act as cellular transducers of stimulus-secretion coupling, activators of intracellular proteins, and in control of cell growth and differentiation. Functional VSCCs have been shown to exist in osteoblasts, however, no molecular cloning has been reported. To obtain information concerning the molecular identity of the osteoblastic VSCC, we used an RT-PCR regional amplification approach. Sequencing of the products indicated that osteoblasts express at least two isoforms of the L-type VSCC, \alpha 1\sb{\rm C-a} and the \alpha 1\sb{\rm C-d}, which share regions of identity to the \alpha \sb{\rm 1C} isoform first identified in cardiac myocytes. The ability of 1,25(\rm OH)\sb2D\sb3 and structural analogs to modulate expression of Ca\sp{2+} channel mRNA was then investigated. Cells were cultured for 48 hr in the presence of 1,25(\rm OH)\sb2D\sb3 or vitamin D analogs, and the levels of mRNA encoding VSCC \alpha \sb{\rm 1C} were quantitated using a competitive RT-PCR assay. It was found that 1,25(\rm OH)\sb2D\sb3 and analog BT reduced steady state levels of \alpha \sb{\rm 1C} mRNA. Conversely, analog AT did not alter steady state levels of Ca\sp{2+} channel mRNA. Since it has been shown previously that analog BT, but not AT, binds and activates the nuclear vitamin D receptor, these findings suggest that the down regulation of channel mRNA involves the nuclear receptor for 1,25(\rm OH)\sb2D\sb3

    Novel Role of Aminopeptidase-A in Angiotensin-(1–7) Metabolism Post Myocardial Infarction

    No full text
    Aminopeptidase-A (APA) is a less well-studied enzyme of the renin-angiotensin system. We propose that it is involved in cardiac angiotensin (ANG) metabolism and its pathologies. ANG-(1-7) can ameliorate remodeling after myocardial injury. The aims of this study are to (1) develop mass spectrometric (MS) approaches for the assessment of ANG processing by APA within the myocardium; and (2) investigate the role of APA in cardiac ANG-(1-7) metabolism after myocardial infarction (MI) using sensitive MS techniques. MI was induced in C57Bl/6 male mice by ligating the left anterior descending (LAD) artery. Frozen mouse heart sections (in situ assay) or myocardial homogenates (in vitro assay) were incubated with the endogenous APA substrate, ANG II. Results showed concentration- and time-dependent cardiac formation of ANG III from ANG II, which was inhibited by the specific APA inhibitor, 4-amino-4-phosphonobutyric acid. Myocardial APA activity was significantly increased 24 h after LAD ligation (0.82 ± 0.02 vs. 0.32 ± 0.02 ρmol·min(-1)·μg(-1), MI vs. sham, P \u3c 0.01). Both MS enzyme assays identified the presence of a new peptide, ANG-(2-7), m/z 784, which accumulated in the MI (146.45 ± 6.4 vs. 72.96 ± 7.0%, MI vs. sham, P \u3c 0.05). Use of recombinant APA enzyme revealed that APA is responsible for ANG-(2-7) formation from ANG-(1-7). APA exhibited similar substrate affinity for ANG-(1-7) compared with ANG II {Km (ANG II) = 14.67 ± 1.6 vs. Km [ANG-(1-7)] = 6.07 ± 1.12 μmol/l, P \u3c 0.05}. Results demonstrate a novel role of APA in ANG-(1-7) metabolism and suggest that the upregulation of APA, which occurs after MI, may deprive the heart of cardioprotective ANG-(1-7). Thus APA may serve as a potentially novel therapeutic target for management of tissue remodeling after MI
    corecore