1,809 research outputs found
Martian surface physical properties to be derived by radar altimeter on the Mars observer spacecraft
The potential is described of a candidate Mars Observer altimeter for determining dielectric properties of Mars regolith. It is pointed out that it is straightforward to use the time between altimeter pulse trains for passive radiometry (hence dielectric properties) and roughness can be derived. Given the mission plan the whole surface can be mapped at least three times, yielding data on seasonal variability
Velocity gained and altitude lost in recoveries from inclined flight paths
A series of charts is given showing the variation of the velocity gained and the altitude lost in dive pullouts with the initial indicated air speed and the dive angle. The effects of the maximum load factor, the drag parameter K, the initial altitude, and the type of recovery on the velocity gained and the altitude lost are also considered. The results were obtained from a step-by-step solution of the equations of motion in which mean values of the air density and the airplane drag coefficient were used. The load-factor variation with time is arbitrarily specified in various ways to simulate pull-out procedures, some of which might be encountered in flight
Committee Reports
Contains reports from the following committees of the Washington State Bar Association: Administrative Law, Civil Rights, Code Commission, Cooperation with American Bar Association, Federal Legislation, Improvement of Probate Statutes, Law Examiners, Legal Education, Legal Ethics, Legal Institutes, Legislative, Obituary, Selection of Judges, and Unauthorized Practice of Law. Also includes the auditor\u27s report
Large aperture scanning airborne lidar
A large aperture scanning airborne lidar facility is being developed to provide important new capabilities for airborne lidar sensor systems. The proposed scanning mechanism allows for a large aperture telescope (25 in. diameter) in front of an elliptical flat (25 x 36 in.) turning mirror positioned at a 45 degree angle with respect to the telescope optical axis. The lidar scanning capability will provide opportunities for acquiring new data sets for atmospheric, earth resources, and oceans communities. This completed facility will also make available the opportunity to acquire simulated EOS lidar data on a near global basis. The design and construction of this unique scanning mechanism presents exciting technological challenges of maintaining the turning mirror optical flatness during scanning while exposed to extreme temperatures, ambient pressures, aircraft vibrations, etc
Scenes from the Past Multidetector CT of Egyptian Mummies of the Redpath Museum
As a nondestructive method of historical and anthropologic inquiry, imaging has played an important role in mummy studies over the past several decades. Recent technologic advances have made multidetector computed tomography (CT) an especially useful means for deepening the present understanding of ancient cultures by examining preserved human remains. In April 2011, three ancient Egyptian human mummies from the Redpath Museum of McGill University were examined with 320-section multidetector CT as part of the IMPACT Radiological Mummy Database project headquartered at the University of Western Ontario. Whole-body scanning was performed with a section thickness of 0.5 mm and a peak voltage of 120 kVp, and the raw CT datasets were postprocessed by using smooth body and high-resolution bone convolution filters. Two of the mummies were scanned at different energy levels (80 and 135 keV). The high-resolution CT scans revealed the details of mummification and allowed observations about the socioeconomic and health status of the human subjects based on both the mummification technique used and the appearance of the remains, particularly the bones and teeth. The paleopathologic information obtained from the scans confirmed some findings in studies performed in the same mummies in the late 19th and 20th centuries. The CT scans also demonstrated a high degree of variability in Egyptian mortuary practice, variability that is not generally recognized in the literature. Unusual features that were observed included a relatively uncommon retained heart in mummy RM2718, retained lungs in a mummy from which the heart had been extracted (RM2720), and a cartonnage plaque placed over the left abdomen of a mummy that had been eviscerated transperineally (RM2717)
Angiotensin II stimulates superoxide production by nitric oxide synthase in thick ascending limbs
Angiotensin II (Ang II) causes nitric oxide synthase (NOS) to become a source of superoxide (O2 (-)) via a protein kinase C (PKC)-dependent process in endothelial cells. Ang II stimulates both NO and O2 (-) production in thick ascending limbs. We hypothesized that Ang II causes O2 (-) production by NOS in thick ascending limbs via a PKC-dependent mechanism. NO production was measured in isolated rat thick ascending limbs using DAF-FM, whereas O2 (-) was measured in thick ascending limb suspensions using the lucigenin assay. Consistent stimulation of NO was observed with 1 nmol/L Ang II (P \u3c 0.001; n = 9). This concentration of Ang II-stimulated O2 (-) production by 50% (1.77 ± 0.26 vs. 2.62 ± 0.36 relative lights units (RLU)/s/μg protein; P \u3c 0.04; n = 5). In the presence of the NOS inhibitor L-NAME, Ang II-stimulated O2 (-) decreased from 2.02 ± 0.29 to 1.10 ± 0.11 RLU/s/μg protein (P \u3c 0.01; n = 8). L-arginine alone did not change Ang II-stimulated O2 (-) (2.34 ± 0.22 vs. 2.29 ± 0.29 RLU/s/μg protein; n = 5). In the presence of Ang II plus the PKC α/β1 inhibitor Gö 6976, L-NAME had no effect on O2 (-) production (0.78 ± 0.23 vs. 0.62 ± 0.11 RLU/s/μg protein; n = 7). In the presence of Ang II plus apocynin, a NADPH oxidase inhibitor, L-NAME did not change O2 (-) (0.59 ± 0.04 vs. 0.61 ± ×0.08 RLU/s/μg protein; n = 5). We conclude that: (1) Ang II causes NOS to produce O2 (-) in thick ascending limbs via a PKC- and NADPH oxidase-dependent process; and (2) the effect of Ang II is not due to limited substrate
The effect of social media communication on consumer perceptions of brands
Researchers and brand managers have limited understanding of the effects social media communication has on how consumers perceive brands. We investigated 504 Facebook users in order to observe the impact of firm-created and user-generated social media communication on brand equity, brand attitude and purchase intention by using a standardized online survey throughout Poland. To test the conceptual model, we analyzed 60 brands across three different industries: non-alcoholic beverages, clothing and mobile network operators. When analyzing the data, we applied the structural equation modeling technique to both investigate the interplay of firm-created and user-generated social media communication and examine industry-specific differences. The results of the empirical studies showed that user-generated social media communication had a positive influence on both brand equity and brand attitude, whereas firm-created social media communication affected only brand attitude. Both brand equity and brand attitude were shown to have a positive influence on purchase intention. In addition, we assessed measurement invariance using a multi-group structural modeling equation. The findings revealed that the proposed measurement model was invariant across the researched industries. However, structural path differences were detected across the models
Ion rocket engine development Quarterly report no. 3, 1 Apr. - 30 Jun. 1965
Integral focus cesium contact ion rocket engine and iridium and rhenium coated porous tungsten ionizer evaluation
Breakthrough capability for the NASA Astrophysics Explorer Program: Reaching the darkest sky
We describe a mission architecture designed to substantially increase the
science capability of the NASA Science Mission Directorate (SMD) Astrophysics
Explorer Program for all AO proposers working within the near-UV to
far-infrared spectrum. We have demonstrated that augmentation of Falcon 9
Explorer launch services with a 13 kW Solar Electric Propulsion (SEP) stage can
deliver a 700 kg science observatory payload to extra-Zodiacal orbit. This new
capability enables up to ~13X increased photometric sensitivity and ~160X
increased observing speed relative to a Sun-Earth L2, Earth-trailing, or Earth
orbit with no increase in telescope aperture. All enabling SEP stage
technologies for this launch service augmentation have reached sufficient
readiness (TRL-6) for Explorer Program application in conjunction with the
Falcon 9. We demonstrate that enabling Astrophysics Explorers to reach
extra-zodiacal orbit will allow this small payload program to rival the science
performance of much larger long development time systems; thus, providing a
means to realize major science objectives while increasing the SMD Astrophysics
portfolio diversity and resiliency to external budget pressure. The SEP
technology employed in this study has strong applicability to SMD Planetary
Science community-proposed missions. SEP is a stated flight demonstration
priority for NASA's Office of the Chief Technologist (OCT). This new mission
architecture for astrophysics Explorers enables an attractive realization of
joint goals for OCT and SMD with wide applicability across SMD science
disciplines.Comment: Submitted to proceedings of the SPIE Astronomical Telescopes and
Instrumentation conference, Amsterdam, The Netherlands, July 201
Survey of Photochemical and Rate Data for Twenty‐eight Reactions of Interest in Atmospheric Chemistry
Photochemical and rate data have been evaluated for 28 gas phase reactions of interest for the chemistry of the stratosphere. The results are presented on data sheets, one per reaction. For each reaction, the available data are summarized. Where possible there is given a preferred value for the rate constant or, for the photochemical reactions, preferred values for primary quantum yields and optical absorption coefficients.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87745/2/267_1.pd
- …