238 research outputs found

    Chronic Nicotine Modifies Skeletal Muscle Na,K-ATPase Activity through Its Interaction with the Nicotinic Acetylcholine Receptor and Phospholemman

    Get PDF
    Our previous finding that the muscle nicotinic acetylcholine receptor (nAChR) and the Na,K-ATPase interact as a regulatory complex to modulate Na,K-ATPase activity suggested that chronic, circulating nicotine may alter this interaction, with long-term changes in the membrane potential. To test this hypothesis, we chronically exposed rats to nicotine delivered orally for 21–31 days. Chronic nicotine produced a steady membrane depolarization of ∼3 mV in the diaphragm muscle, which resulted from a net change in electrogenic transport by the Na,K-ATPase α2 and α1 isoforms. Electrogenic transport by the α2 isoform increased (+1.8 mV) while the activity of the α1 isoform decreased (−4.4 mV). Protein expression of Na,K-ATPase α1 or α2 isoforms and the nAChR did not change; however, the content of α2 subunit in the plasma membrane decreased by 25%, indicating that its stimulated electrogenic transport is due to an increase in specific activity. The physical association between the nAChR, the Na,K-ATPase α1 or α2 subunits, and the regulatory subunit of the Na,K-ATPase, phospholemman (PLM), measured by co-immuno precipitation, was stable and unchanged. Chronic nicotine treatment activated PKCα/β2 and PKCδ and was accompanied by parallel increases in PLM phosphorylation at Ser63 and Ser68. Collectively, these results demonstrate that nicotine at chronic doses, acting through the nAChR-Na,K-ATPase complex, is able to modulate Na,K-ATPase activity in an isoform-specific manner and that the regulatory range includes both stimulation and inhibition of enzyme activity. Cholinergic modulation of Na,K-ATPase activity is achieved, in part, through activation of PKC and phosphorylation of PLM

    Regulation of the Na,K-ATPase Gamma-Subunit FXYD2 by Runx1 and Ret Signaling in Normal and Injured Non-Peptidergic Nociceptive Sensory Neurons

    Get PDF
    Dorsal root ganglia (DRGs) contain the cell bodies of sensory neurons which relay nociceptive, thermoceptive, mechanoceptive and proprioceptive information from peripheral tissues toward the central nervous system. These neurons establish constant communication with their targets which insures correct maturation and functioning of the somato-sensory nervous system. Interfering with this two-way communication leads to cellular, electrophysiological and molecular modifications that can eventually cause neuropathic conditions. In this study we reveal that FXYD2, which encodes the gamma-subunit of the Na,K-ATPase reported so far to be mainly expressed in the kidney, is induced in the mouse DRGs at postnatal stages where it is restricted specifically to the TrkB-expressing mechanoceptive and Ret-positive/IB4-binding non-peptidergic nociceptive neurons. In non-peptidergic nociceptors, we show that the transcription factor Runx1 controls FXYD2 expression during the maturation of the somato-sensory system, partly through regulation of the tyrosine kinase receptor Ret. Moreover, Ret signaling maintains FXYD2 expression in adults as demonstrated by the axotomy-induced down-regulation of the gene that can be reverted by in vivo delivery of GDNF family ligands. Altogether, these results establish FXYD2 as a specific marker of defined sensory neuron subtypes and a new target of the Ret signaling pathway during normal maturation of the non-peptidergic nociceptive neurons and after sciatic nerve injury

    Outdoor particulate matter and childhood asthma admissions in Athens, Greece: a time-series study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Particulate matter with diameter less than 10 micrometers (PM<sub>10</sub>) that originates from anthropogenic activities and natural sources may settle in the bronchi and cause adverse effects possibly via oxidative stress in susceptible individuals, such as asthmatic children. This study aimed to investigate the effect of outdoor PM<sub>10 </sub>concentrations on childhood asthma admissions (CAA) in Athens, Greece.</p> <p>Methods</p> <p>Daily counts of CAA from the three Children's Hospitals within the greater Athens' area were obtained from the hospital records during a four-year period (2001-2004, n = 3602 children). Mean daily PM<sub>10 </sub>concentrations recorded by the air pollution-monitoring network of the greater Athens area were also collected. The relationship between CAA and PM<sub>10 </sub>concentrations was investigated using the Generalized Linear Models with Poisson distribution and logistic analysis.</p> <p>Results</p> <p>There was a statistically significant (95% CL) relationship between CAA and mean daily PM<sub>10 </sub>concentrations on the day of exposure (+3.8% for 10 μg/m<sup>3 </sup>increase in PM<sub>10 </sub>concentrations), while a 1-day lag (+3.4% for 10 μg/m<sup>3 </sup>increase in PM<sub>10 </sub>concentrations) and a 4-day lag (+4.3% for 10 μg/m<sup>3 </sup>increase in PM<sub>10 </sub>concentrations) were observed for older asthmatic children (5-14 year-old). High mean daily PM<sub>10 </sub>concentration (the highest 10%; >65.69 μg/m<sup>3</sup>) doubled the risk of asthma exacerbations even in younger asthmatic children (0-4 year-old).</p> <p>Conclusions</p> <p>Our results provide evidence of the adverse effect of PM<sub>10 </sub>on the rates of paediatric asthma exacerbations and hospital admissions. A four-day lag effect between PM<sub>10 </sub>peak exposure and asthma admissions was also observed in the older age group.</p

    Cerebellar gene expression profiles of mouse models for Rett syndrome reveal novel MeCP2 targets

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MeCP2, methyl-CpG-binding protein 2, binds to methylated cytosines at CpG dinucleotides, as well as to unmethylated DNA, and affects chromatin condensation. <it>MECP2 </it>mutations in females lead to Rett syndrome, a neurological disorder characterized by developmental stagnation and regression, loss of purposeful hand movements and speech, stereotypic hand movements, deceleration of brain growth, autonomic dysfunction and seizures. Most mutations occur <it>de novo </it>during spermatogenesis. Located at Xq28, <it>MECP2 </it>is subject to X inactivation, and affected females are mosaic. Rare hemizygous males suffer from a severe congenital encephalopathy.</p> <p>Methods</p> <p>To identify the pathways mis-regulated by MeCP2 deficiency, microarray-based global gene expression studies were carried out in cerebellum of <it>Mecp2 </it>mutant mice. We compared transcript levels in mutant/wildtype male sibs of two different MeCP2-deficient mouse models at 2, 4 and 8 weeks of age. Increased transcript levels were evaluated by real-time quantitative RT-PCR. Chromatin immunoprecipitation assays were used to document <it>in vivo </it>MeCP2 binding to promoter regions of candidate target genes.</p> <p>Results</p> <p>Of several hundred genes with altered expression levels in the mutants, twice as many were increased than decreased, and only 27 were differentially expressed at more than one time point. The number of misregulated genes was 30% lower in mice with the exon 3 deletion (<it>Mecp2</it><sup>tm1.1Jae</sup>) than in mice with the larger deletion (<it>Mecp2</it><sup>tm1.1Bird</sup>). Between the mutants, few genes overlapped at each time point. Real-time quantitative RT-PCR assays validated increased transcript levels for four genes: <it>Irak1</it>, interleukin-1 receptor-associated kinase 1; <it>Fxyd1</it>, phospholemman, associated with Na, K-ATPase;<it>Reln</it>, encoding an extracellular signaling molecule essential for neuronal lamination and synaptic plasticity; and <it>Gtl2/Meg3</it>, an imprinted maternally expressed non-translated RNA that serves as a host gene for C/D box snoRNAs and microRNAs. Chromatin immunoprecipitation assays documented <it>in vivo </it>MeCP2 binding to promoter regions of <it>Fxyd1, Reln</it>, and <it>Gtl2</it>.</p> <p>Conclusion</p> <p>Transcriptional profiling of cerebellum failed to detect significant global changes in <it>Mecp2</it>-mutant mice. Increased transcript levels of <it>Irak1, Fxyd1, Reln</it>, and <it>Gtl2 </it>may contribute to the neuronal dysfunction in MeCP2-deficient mice and individuals with Rett syndrome. Our data provide testable hypotheses for future studies of the regulatory or signaling pathways that these genes act on.</p

    Dimethyl fumarate in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial

    Get PDF
    Dimethyl fumarate (DMF) inhibits inflammasome-mediated inflammation and has been proposed as a treatment for patients hospitalised with COVID-19. This randomised, controlled, open-label platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]), is assessing multiple treatments in patients hospitalised for COVID-19 (NCT04381936, ISRCTN50189673). In this assessment of DMF performed at 27 UK hospitals, adults were randomly allocated (1:1) to either usual standard of care alone or usual standard of care plus DMF. The primary outcome was clinical status on day 5 measured on a seven-point ordinal scale. Secondary outcomes were time to sustained improvement in clinical status, time to discharge, day 5 peripheral blood oxygenation, day 5 C-reactive protein, and improvement in day 10 clinical status. Between 2 March 2021 and 18 November 2021, 713 patients were enroled in the DMF evaluation, of whom 356 were randomly allocated to receive usual care plus DMF, and 357 to usual care alone. 95% of patients received corticosteroids as part of routine care. There was no evidence of a beneficial effect of DMF on clinical status at day 5 (common odds ratio of unfavourable outcome 1.12; 95% CI 0.86-1.47; p = 0.40). There was no significant effect of DMF on any secondary outcome
    corecore