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ABSTRACT

FXYD6, FXYD domain containing ion transport regulator
6, has been reported to affect the activity of Na+/K+-ATP-
ase and be associated with mental diseases. Here, we
demonstrate that FXYD6 is up-regulated in hepatocellular
carcinoma (HCC) and enhances the migration and prolif-
eration of HCC cells. Up-regulation of FXYD6 not only
positively correlates with the increase of Na+/K+-ATPase
but also coordinateswith the activationof its downstream
Src-ERK signaling pathway. More importantly, blocking
FXYD6 by its functional antibody significantly inhibits the
growth potential of the xenografted HCC tumors in mice,
indicating that FXYD6 represents a potential therapeutic
target toward HCC. Altogether, our results establish a
critical role of FXYD6 in HCC progression and suggest
that the therapy targeting FXYD6 can benefit the clinical
treatment toward HCC patients.

KEYWORDS FXYD6, hepatocellular carcinoma (HCC),
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INTRODUCTION

FXYD6 (FXYD domain containing ion transport regulator 6)
is the sixth defined member of the FXYD family, whose
members are named due to the presence of a highly

conserved FXYD (Phe-X-Tyr-Asp; X, any amino acid) motif
in their amino acid sequences (Sweadner and Rael, 2000).
Mammalian FXYD family consists of seven members of
FXYD1–7, which are type I trans-membrane proteins and are
similar to each other not only in their protein structure but
also in their function (Geering, 2006).

FXYDs are regulators of Na+/K+-ATPase, which is located
on the cellular membrane and is composed of α and β sub-
units. FXYDs modulate the holo-enzyme kinetic properties of
Na+/K+-ATPaseby changing the rate andaffinity ofNa+ andK+

transport (Garty and Karlish, 2006). Recent report indicated
that FXYDs stabilize the active conformation of the Na+/K+-
ATPase by direct interaction with this enzyme (Mishra et al.,
2011). It is noteworthy that, besides its major role as the Na+/
K+ pumps, Na+/K+-ATPase is involved in tumor proliferation
and migration through activating its downstream Src-ERK
signaling components (Prassas and Diamandis, 2008). The
involvement of the holo-enzyme of Na+/K+-ATPase in tumor
progression is further manifested by the high abundance of its
α1 subunits in clinical HCC samples (Xu et al., 2010).

As the critical regulators of Na+/K+-ATPase, the relevance
of FXYDs to tumors recently has also been attracting a
plethora of attention. It has been reported that FXYD2 (Gaut
et al., 2013), FXYD3 (Kayed et al., 2006; Widegren et al.,
2009) and FXYD5 (Sato et al., 2003) are up-regulated in
several types of tumors, leading to accelerated tumor growth
and progression (Grzmil et al., 2004; Ino et al., 2002).

However, whether or not FXYD6 is up-regulated and
involved in tumor progression, particularly in HCC, remains
elusive. We find that FXYD6 is up-regulated in HCC and its
expression levels are positively associated with the
increased migration potential and proliferation rate in HCC
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cells. Importantly, blockade of FXYD6 by our self-generated
anti-FXYD6 functional antibody significantly inhibited xeno-
grafted tumor growth, suggesting that FXYD6 is a novel
therapeutic target toward HCC.

RESULTS

Anti-FXYD6 antibody of FD10 possesses high
specificity and affinity

Except minor investigations showing the FXYD6 transcript
was detected in human central nervous system and asso-
ciated with some mental disorders (Choudhury et al., 2007;
Shiina et al., 2010), FXYD6 expression profile in other tis-
sues, especially in tumor tissues, remains largly unknown.
To determine the role of FXYD6 in tumor progression, we

firstly generated a panel of mouse mAbs (monoclonal anti-
body). According to the enzyme-linked immunosorbent
assay (ELISA) results, the FD10 mAb against FXYD6 was
selected for further performance evaluation.

To test the sole specificity of FD10 to its own antigen of
FXYD6, we produced the exogenously expressed FXYD1 to
FXYD5 proteins by inserting the fragments containing the
FXYD1–5 cDNA coding sequences into the prokaryotic
expression vector pGEX-6P-1-GST to produce the plasmids of
pGEX-6P-1-GST-FXYD1–5. Meanwhile, we constructed the
plasmid of pET28a-His-FXYD6 to be used as a positive control
for immunoblotting. The correct expression of GST-tagged
FXYD1 to FXYD5 and the His-tagged FXYD6 was confirmed
using anti-GST and anti-His antibody, respectively (Fig. 1A).
FD10 only recognized FXYD6, but not FXYD 1–5 (Fig. 1B).
Such specificity was further confirmed by immunoblotting with
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Figure 1. Anti-FXYD6 mAb of FD10 possesses high specificity and affinity. (A and B) Bacteria-expressed FXYD1–6 proteins

from whole cell lysate without or with IPTG were detected by anti-Tag (A) or anti-FXYD6 mAb of FD10 (B). (C) Immunoblotting

analysis of FXYD6 expression in 293Tcells. Cells were transfected with pcDNA3.1-empty or pcDNA3.1-FXYD6, and whole cell lysate

was analyzed using anti-FXYD6 antibody of FD10 (left panel) or anti-myc antibody (right panel). (D) FACS analysis of FD10 binding

with FXYD6. The 293T cells, transfected with pcDNA3.1-FXYD6 (left panel) or with pcDNA3.1-empty (right panel), were incubated

with FD10 or control normal IgG. (E) SPR sensorgrams illustrating binding of FD10 to FXYD6 proteins (black line) and fitted saturation

binding curves (red line). The dissociation constant (KD) was calculated from the saturation binding curve. (F) Normal liver tissue (left

panel) and HCC tissue (right panel) were stained by immunohistochemistry with FD10 (bar, 40 μm).
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eukaryoticFXYD6proteins, inwhichFD10specificallydetected
a single band of approximately 20 kDa under reducing condi-
tions in the 293T cells transfectants of pcDNA3.1-FXYD6
(Fig. 1C, left panel). The in-frame correct expression of this
Myc-tagged FXYD6 was further confirmed using the commer-
cial Myc-Tag mAb (Fig. 1C, right panel).

Fluorescence activated cell sorting (FACS) analysis
showed that FD10 bound with cells harboring pcDNA3.1-
FXYD6 (Fig. 1D, left panel), whereas no such binding was
detected in cells with pcDNA3.1-empty vector only (Fig. 1D,
right panel), demonstrating that FD10 could recognize the
FXYD6 with native conformation. Surface plasmon reso-
nance (SPR) assay data showed that the equilibrium dis-
sociation constant (KD) of FD10 to FXYD6 was 54.1 nmol/L
(Fig. 1E), indicating that the affinity of FD10 to its antigen of
FXYD6 is relatively high. Taken together, these results show
that our self-generated FD10 can be used in further inves-
tigation of the FXYD6’s role in tumor progression.

FXYD6 is up-regulated in some types of human tumors

To clarify whether or not the difference of FXYD6 protein
levels is existed between normal versus cancerous tissues,
using FD10, we conducted immunohistochemical screen on
a commercial human tissue array with a total of 397 samples
(Table S1). FXYD6 was screened out from a large proportion
of tumor samples and the expression profile of FXYD6 was
summarized in Table 1. Although no significant difference
was found on FXYD6 levels between the cancerous and the
normal tissues in the following tested tumors including
cerebrum, uterus, bladder, ovary, breast, testis, lung, stom-
ach and pancreas. The significant high levels of FXYD6
were detected in tumors of liver, thyroid, prostate and colon,
compared with the corresponding normal tissues (Fig. 1F).
HCC and normal liver tissues accounted for the largest
proportion in the detected samples, implying that FXYD6
may play a critical role in the progression of HCC.

Table 1. The expression profile of FXYD6 in human tissues

Type of tissues Positive/Total Positive (%) P-value

Liver Hepatocellular carcinoma 54/56 96 P < 0.01

Normal tissue 11/35 31

Thyroid Carcinoma 17/17 100 P < 0.01

Normal tissue 2/6 33

Prostate Adenocarcinoma 9/13 69 0.01 < P < 0.05

Normal tissue 1/6 17

Colon Adenocarcinoma 17/17 100 0.01 < P < 0.05

Normal tissue 4/6 67

Cerebrum Astrocytoma 17/17 100 NS

Normal tissue 7/7 100

Uterus Adenocarcinoma 20/20 100 NS

Normal tissue 5/5 100

Bladder Transitional cell carcinoma 18/20 90 NS

Normal tissue 1/1 100

Ovary Carcinoma 20/30 67 NS

Normal tissue 4/6 67

Breast Carcinoma 18/29 62 NS

Normal tissue 6/9 67

Testis Seminoma 12/21 57 NS

Normal tissue 5/6 83

Lung Carcinoma 14/25 56 NS

Normal tissue 1/1 100

Stomach Adenocarcinoma 9/18 50 NS

Normal tissue 3/5 60

Pancreas Adenocarcinoma 5/15 33 NS

Normal tissue 3/6 50

NS: not significant.

RESEARCH ARTICLE Qian Gao et al.

534 © The Author(s) 2014. This article is published with open access at Springerlink.com and journal.hep.com.cn

P
ro
te
in

&
C
e
ll



FXYD6 promotes migration and proliferation of HCC
cells

To further explore the implication of FXYD6 up-regulation in
HCC progression, we collected six HCC cell lines including
HepG2,SNU449,Hep3B,Huh-7,MHCC97HandSMMC7721
for this investigation. Meanwhile, the L02 cell was included as
the normal control for liver cell line. Consistent with the

immunohistochemical results (Table 1), FACS data showed
that FXYD6 was detected out from almost all tested HCC cell
lines but not from L02 cells. Among these 6HCC cell lines, the
cell line harboring the highest abundance of FXYD6 was
HepG2,while the cell linewith lowest FXYD6wasSMMC7721
(Fig. 2A). Therefore, the FXYD6-highest HepG2 and the
FXYD6-lowest SMMC7721 cells were ideal cell lines for
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Figure 2. FXYD6 promotes the migration and proliferation of HCC cells. (A) FACS analyzed the expression of FXYD6 protein

within 6 HCC cell lines and L02 control cell line using FD10. Control cells were SMMC7721 stained by mIgG. (B) Immunoblotting of

FXYD6 protein in HepG2 cells after 36 h co-transfection with siRNA-FXYD6 and pcDNA3.1-FXYD6. (C) The migration of HepG2 cells

was determined after 36 h co-transfection with siRNA-FXYD6 and pcDNA3.1-FXYD6. *P < 0.05 or **P < 0.01, compared with the

siRNA-FXYD6 group. (D) The proliferation of HepG2 cells was determined after co-transfection with siRNA-FXYD6 and pcDNA3.1-

FXYD6 at different time points. Rescue assay was conducted in HepG2 cells co-transfected with siRNA-FXYD6 and pcDNA3.1-

FXYD6. *P < 0.05 or **P < 0.01, compared with the siRNA-FXYD6 group. (E) Immunoblotting of FXYD6 protein in SMMC7721 cells

after 24 h transfection with pcDNA3.1-FXYD6. (F) The migration of SMMC7721 cells was determined after 24 h transfection with

pcDNA3.1-FXYD6. **P < 0.01, compared with the pcDNA3.1-empty group. (G) The proliferation of SMMC7721 cells was determined

after transfection with pcDNA3.1-FXYD6 at different time points. *P < 0.05 or **P < 0.01, compared with the pcDNA3.1-empty group.

Data were collected from 3 independent experiments and the number of migrated cells from the controls was normalized as one.
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observation of the correlation between the FXYD abundance
and tumor progression.

Knocking down of FXYD6 by siRNA in HepG2 cells
(Fig. 2B) not only inhibited cell migration but also
decreased cell proliferation, and such inhibition was
restored when the down-regulated FXYD6 was rescued by
exogenous over-expression of FXYD6 (Fig. 2C and 2D).
Conversely, enforced over-expression of FXYD6 in
SMMC7721 cells (Fig. 2E) increased migration and prolif-
eration of these cells, compared with control transfectants
of empty vector (Fig. 2F and 2G). Therefore, these results
demonstrate that the FXYD6 expression levels are posi-
tively correlated with HCC cells migration and proliferation,
suggesting that FXYD6 is implicated in tumor progression
of HCC.

FXYD6 is associated with the Na+/K+-ATPase in HCC
cells

Although FXYD6 has been known to be a regulator of Na+/K+-
ATPase and Delprat et al. has revealed the relation of FXYD6
with Na+/K+-ATPase in rat inner ear (Delprat et al., 2007a;
Delprat et al., 2007b), whether or not FXYD6 interacts with the
Na+/K+-ATPase in HCC remains elusive. Co-immunoprecita-
tion (co-IP) results indicated that the interaction existed
between FXYD6 and Na+/K+-ATPase not only in HepG2 cells
(Fig. 3A, upper panel) but also in SMMC7721 cells harboring
FXYD6 expressing vector (Fig. 3A, lower panel). This inter-
action was further confirmed by immunofluorescence assay,
by which we observed the co-localization of FXYD6 and
Na+/K+-ATPase in the HCC tissues (Fig. S1), in HepG2
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Figure 3. FXYD6 associates with Na+/K+-ATPase in HCC. (A) Co-IP analysis of the interaction betweenFXYD6andNa+/K+-ATPase

α1 inHepG2cells (upper panel) and inSMMC7721cells transfectedwith pcDNA3.1-FXYD6 (lower panel). The immunoprecipitateswere

analyzed by immunoblotting with anti-Na+/K+-ATPase α1 and FD10 antibodies. (B) Co-localization analysis of FXYD6 and Na+/K+-

ATPase α1 in same cell lines as described in (A) using double immunostaining with FD10 (green) and anti-Na+/K+-ATPase α1 (red).

Nuclei were stained with DAPI (blue) and colocalization is indicated in yellow (bar, 10 μm). (C and D) Immunoblotting of Na+/K+-ATPase

α1 subunit expression in HepG2 cells (C) after 48 h co-transfection with siRNA-FXYD6 and pcDNA3.1-FXYD6 or in SMMC7721 cells

(D) after 48 h transfectionwith pcDNA3.1-FXYD6. Immunoblotting data fromat least 3 independent experimentsweremeasuredwith the

band density, which were normalized to GAPDH. The signals from control cells were put to one. The bar graphs (mean ± SEM) and

representative images are shown. *P < 0.05 or **P < 0.01, compared with the control.
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(Fig. 3B, upper panel) and in SMMC7721 transfectants of
FXYD6 (Fig. 3B, lower panel).More interestingly, weobserved
that the increased expression levels of FXYD6were positively
correlatedwith the enhanced protein levels of Na+/K+-ATPase

α1 (Fig. 3C and 3D), indicating that FXYD6 exerts its regula-
tory effect on the holo-enzymatic activity of Na+/K+-ATPase
through up-regulating the protein levels of Na+/K+-ATPase α1
besides the direct interaction with this enzyme.
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FXYD6 promotes the activation of Na+/K+-ATPase
downstream signaling

Some oncogenic signaling pathways, such as the Src and
ERK pathways, are tightly associated with Na+/K+-ATPase-
mediated tumor cells migration and proliferation (Prassas
and Diamandis, 2008). To determine the mechanism
underlying FXYD6-induced tumor cell migration and prolif-
eration, we measured the phosphorylation of both kinases
when FXYD6 expression levels were modulated. In HepG2
cells, knocking down of FXYD6 by siRNA significantly
decreased the phosphorylation of Src and ERK (Fig. 4A and
4B); such decrease was rescued when FXYD6 was restored
by exogenously expressing FXYD6. In contrast, the levels of
the phosphorylated Src and ERK in the SMMC7721 cells

were dramatically increased after transfection with FXYD6-
containing vector compared with control transfectants
(Fig. 4C and 4D). In HepG2 cells, such positive correlation
between FXYD6 protein levels and the Src or ERK phos-
phorylation levels (Fig. 4E and 4F, upper in columns 1–3)
disappeared when the specific Src inhibitor PP2 or ERK
inhibitor U0126 was added, respectively (Fig. 4E and 4F,
upper in columns 4–6). Consistently, in SMMC7721 cells,
such correlation was also not detected in the presence of
PP2 or U0126 (Fig. 4G and 4H, upper panel).

Consequently, in the presence of PP2 or U0126, down-
regulation of FXYD6 by siRNA no longer had significantly
inhibitory effect on the migration (Fig. 4E and 4F, lower
panel) or proliferation (Fig. 4I and 4J) of HepG2 cells. Con-
versely, in SMMC7721 cells, up-regulation of FXYD6 by
over-expression had no more enhanced effects on the
migration (Fig. 4G and 4H, lower panel) and proliferation
(Fig. 4K and 4L) when the Src inhibitor PP2 or the ERK
inhibitor U0126 was applied, respectively. These data toge-
ther demonstrate that the enhancement of FXYD6 is closely
related with the increased migration and proliferation of HCC
cells, which is dependent on the activation of Src or ERK, the
downstream signaling components of Na+/K+-ATPase.
Therefore, our data provide the mechanism insight in
FXYD6-promoted HCC progression.

Blocking FXYD6 with its antibody inhibits liver tumor
growth

To assess whether FXYD6 was involved in the tumor for-
mation and growth in vivo, we established xenografted HCC
models in nude mice using the stable transfectants of
SMMC7721-mock and SMMC7721-FXYD6 cells (Fig. 5A).
Both cell lines were able to form tumors; however, the tumors
originated from SMMC7721-FXYD6 cells owned larger vol-
ume and heavier weight than both indexes from SMMC7721-
mock cells (Fig. 5B and 5C). Thus, FXYD6 promoting tumor
growth suggests FXYD6 may be a therapeutic target for
HCC.

To test whether or not the anti-FXYD6 mAb FD10 had
blocking effects on FXYD6 function, FXYD6-highest HepG2
cells were used for this in vitro examination. In HepG2 cells,
the proliferation (Fig. 5D) and migration (Fig. 5E) were sig-
nificantly inhibited in the presence of FD10 compared with
control antibody (mIgG) incubation. Next, we established
HepG2 cells xenografted tumor model in nude mice to
examine the effect of FD10 on tumor therapy in vivo. FD10 or
mIgG treatment was started when tumors reached a volume
of 0.5–0.6 cm diameter. In the FD10-treated group, the sig-
nificant reduction of tumor volume (Fig. 5F) and weight
(Fig. 5G) was observed compared with that in the mIgG
treated control group. Taken together, these data suggest
that FXYD6 is a novel and potential therapeutic target toward
HCC and that therapy against FXYD6 is an effective strategy
toward HCC.

s Figure 4. FXYD6 activates Src and ERK signaling path-

ways in HCC cells. (A and B) The phosphorylations of Y418-

Src (A) and ERK (B) were determined in HepG2 cells co-

tranfected with siRNA-FXYD6 and pcDNA3.1-FXYD6. *P < 0.05

or **P < 0.01, compared with the siRNA-FXYD6 group. (C and

D) The phosphorylations of Y418-Src (C) and ERK (D) were

determined in SMMC7721 cells transfected with pcDNA3.1-

FXYD6. *P < 0.05 or **P < 0.01, compared with the pcDNA3.1-

empty group. The band density (mean ± SEM) was measured

from at least 3 independent immunoblots and was normalized to

the paired total. The signal from control cells was put to one.

The representative images are shown. (E and F) The phos-

phorylation of Y418-Src in the presence of Src inhibitor PP2

(2 μmol/L) (E, upper panel) or the phosphorylation of ERK in

presence of ERK inhibitor U0126 (5 μmol/L) (F, upper panel)

was determined by immunoblotting and the migration (lower

panel) of HepG2 cells was determined after co-transfection with

siRNA-FXYD6 and pcDNA3.1-FXYD6. **P < 0.01 or

***P < 0.001, compared with the siRNA-FXYD6 alone group.

(G and H) The phosphorylation of Y418-Src in the presence of

Src inhibitor PP2 (2 μmol/L) (G, upper panel) or the phosphor-

ylation of ERK in the presence of ERK inhibitor U0126 (5 μmol/

L) (H, upper panel) was determined by immunoblotting and the

migration (lower panel) was determined in SMMC7721 cells

transfected with pcDNA3.1-FXYD6. **P < 0.01, compared with

the pcDNA3.1-empty alone group. (I and J) The proliferation of

HepG2 cells was determined after co-transfection with siRNA-

FXYD6 and pcDNA3.1-FXYD6 in the presence of Src inhibitor

PP2 (2 μmol/L) (I) or ERK inhibitor U0126 (5 μmol/L) (J) at

different time points. **P < 0.01 or ***P < 0.001, compared with

the siRNA-FXYD6 alone group. Rescue assay was conducted

in HepG2 cells co-transfected with siRNA-FXYD6 and

pcDNA3.1-FXYD6. (K and L) The proliferation was determined

in SMMC7721 cells transfected with pcDNA3.1-FXYD6 in the

presence of Src inhibitor PP2 (2 μmol/L) (K) or ERK inhibitor

U0126 (5 μmol/L) (L) at different time points. *P < 0.05,

**P < 0.01, or ***P < 0.001, compared with the pcDNA3.1-empty

alone group. Data were collected from 3 independent experi-

ments and the number of migrated cells from the controls was

normalized as one.
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DISCUSSION

This study for the first time reveals that FXYD6 protein
expression levels are enhanced in HCC. We find that over-
expression of FXYD6 endowed HCC cells with the advan-
tage of migration and growth. Importantly, we show that the
mechanism by which increase of FXYD6 enhances HCC
cells’ migration and growth is attributable to activation of
Na+/K+-ATPase down-stream signaling pathway. Further-
more, we show that blocking FXYD6 with its mAb inhibits
liver tumor growth. Thus, these findings indicate that FXYD6
is a potential therapeutic target to attenuate HCC malignant
characteristics.

To assess FXYD6 protein expression profile in human
tissues, especially in cancerous tissues, the specific anti-
FXYD6 antibody is urgently needed. To this end, we gen-
erated the anti-FXYD6 antibody of FD10, who possesses
high specificity and affinity with FXYD6 (Fig. 1). With this
powerful tool, we provide the first evidence for human
FXYD6 protein expression profile. Consistent with the
reported mRNA expression pattern of FXYD6 in brain
(Choudhury et al., 2007; Shiina et al., 2010), FXYD6 protein
levels were also high in cerebrum tissues. Additionally, we
found that, compared with the normal counterparts, FXYD6
protein abundance was significantly higher in some types of
cancerous tissues, suggesting FXYD6 is likely a novel bio-
marker for these tumors (Table 1).

Inspired by the close correlation between FXYD3/FXYD5
and tumor progression (Kayed et al., 2006; Sato et al., 2003;

Widegren et al., 2009), we supposed that FXYD6 may be
also involved in tumor malignancy. We have found that
knockdown of FXYD6 by siRNA decreases migration
(Fig. 2C) and proliferation (Fig. 2D) in HepG2 cells. Fur-
thermore, we have found that overexpression of FXYD6
increases migration and proliferation in the human
SMMC7721 cells (Fig. 2F and 2G), which agrees with the
role of FXYD3 or FXYD5 overexpression in tumor progres-
sion. Thus, these observations establish that FXYD6 plays
an important role in HCC progression.

Na+/K+-ATPase α subunits are new targets in anticancer
therapy (Mijatovic et al., 2008). Delprat et al. has revealed
the direct interaction of FXYD6 with Na+/K+-ATPase α1
subunit in rat inner ear (Delprat et al., 2007a; Delprat et al.,
2007b). Consistently, in HCC cells, such interaction was also
detected, indicating that this interaction is not cell type spe-
cific (Fig. 3A and 3B). In addition, we have found that FXYD6
induces the expression of Na+/K+-ATPase α1 subunit
(Fig. 3C and 3D), which may account for the up-regulation of
Na+/K+-ATPase α1 in HCC tissues as described in the pre-
vious report (Xu et al., 2010).

Na+/K+-ATPase is involved in tumor progression through
activation of its down-stream Src-ERK signaling pathway
(Prassas and Diamandis, 2008). We have found that knock-
down of FXYD6 by siRNA decreases the activation of Src
(Fig. 4A) and ERK (Fig. 4B) in HepG2 cells. Conversely,
overexpression of FXYD6 increases the activation of Src
(Fig. 4C) and ERK (Fig. 4D) in the human SMMC7721 cells. In
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Figure 5. FXYD6 promotes tumor growth in vivo. (A) FXYD6 expression in stable SMMC7721-mock and SMMC7721-FXYD6 cell

lines. (B) Mean tumor volumes were measured at indicated time points after mice injection with SMMC7721-mock cells or

SMMC7721-FXYD6 cells (n = 6). (C) When tumor size reached to approximately 3 cm3, mice were sacrificed and tumors were

excised and the weight was evaluated. (D and E) The proliferation (D) and migration (E) of HepG2 cells were determined in the

presence of FD10 or mIgG. (F and G) HepG2 cells were injected subcutaneously into nude mice. After forming tumor, mice were

treated with FD10 and mIgG twice a week (n = 5). Tumor volume was calculated (F) and the weight was measured after sacrifice (G).

*P < 0.05, **P < 0.01, or ***P < 0.001, compared with the control.
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addition, when the Src or ERK is inhibited by their specific
inhibitors, the positive correlation between the FXYD abun-
dance and HCC cells survival advantage of migration and
proliferation is abolished (Fig. 4E–L). Therefore, these
observations indicate that the role of FXYD6 in promoting
HCC progression is through activating the down-stream pro-
survival Src-ERK signaling pathway of Na+/K+-ATPase.
Consistent with the function of FXYD6 in endowing HCC cells
survival advantage (Fig. 2) in vitro, we have also shown that
blockade of FXYD6 activity by its functional antibody can
significantly reduce the volume and weight of xenografted
tumors originated from HCC cells in vivo (Fig. 5), suggesting
that FXYD6 is an important mediator in tumor development.

In conclusion, we provide the evidence that FXYD6 is a
novel biomarker for tumors of liver, thyroid, prostate and colon.
The up-regulation of FXYD6 is coordinated with the increase
of Na+/K+-ATPase α1 subunit as well as with the activation of
Na+/K+-ATPase signaling pathway in HCC. Importantly, we
showed that blockade of FXYD6 by its functional antibody
generated by our laboratory significantly inhibited tumor
growth in vivo. Thus, we present the first insight of FXYD6-
mediated tumor progression and speculate that anti-FXYD6
therapy may be an effective strategy toward HCC treatment.

MATERIALS AND METHODS

Construction of plasmids

The plasmids of pGEX-6P-1-GST-FXYD1 to pGEX-6P-1-GST-

FXYD5, pET28a-His-FXYD6 and pcDNA3.1-myc-FXYD6 were gen-

erated by inserting the corresponding full length cDNAs into the empty

vectors.

Generation of anti-FXYD6 antibody of FD10

The recombinant FXYD6 proteins antigen was produced by bacteria,

and purified from the soluble cell lysate fractions by nickel affinity

chromatography. The anti-human FXYD6 mAb of FD10 was gen-

erated from mouse. The mAb was purified from mice ascites and the

isotype was IgG2 determined by a mouse monoclonal antibody

isotyping kit (Sigma) according to the manufacturer’s instructions.

Animals

BALB/c nude mice were obtained from the Animal Center of the

Chinese Academy of Medical Science (Beijing, China). All the

experimental mice were housed under specific-pathogen-free con-

ditions and fed normal chow and water ad libitum at Laboratory

Animal Center of Institute of Biophysics, Chinese Academy of Sci-

ences (Beijing, China).

All animal experiments were approved by the Biomedical Research

Ethics Committee of the Institute of Biophysics, Chinese Academy of

Sciences according to ‘‘Regulations for the Administration of Affairs

Concerning Experimental Animals’’ (approved by the State Council on

October 31, 1988). The animal experiments were performed in com-

pliance with theGuidelines for theCare andUse of Laboratory Animals

(Ministry of Science and Technology, NO. 398, 2006).

Commercial antibodies and reagents

Anti-His Tag, anti-GST Tag and anti-myc Tag antibodies were from

Sigma. Anti-pY418-Src, anti-Src, anti-p-ERK and anti-ERK anti-

bodies were from Cell Signaling Technology. Anti-GAPDH was from

Abcam. Anti-Na+/K+-ATPase α1 subunit was from Santa Cruz. The

secondary antibodies of donkey anti-goat Alexa Fluor 555 and

donkey anti-mouse Alexa Fluor 488 were from Invitrogen. The

secondary antibody of HRP-conjugated goat anti-mouse or rabbit

IgG was from GE Healthcare. All commercial antibodies were used

according to the manufacturer’s instructions.

All chemicals were obtained from Sigma, and all cell culture

media were purchased from Gibco. PP2, a Src kinase inhibitor, was

from Calbiochem. U0126, an ERK kinase inhibitor, was from Cell

Signaling Technology. G418 used in establishing stable transfec-

tants was from Invitrogen.

Cells, transfection and stable transfectants establishment

All cells were maintained at 37°C with 5% CO2. Human Hep3B

cells were obtained from the ATCC and cultured in MEM supple-

mented with 10% fetal calf serum (FCS). Human MHCC97H cells

were bought from Bicleaf Biotechnology Company (Shanghai,

China) and cultured in DMEM supplemented with 10% FCS.

Human HepG2, SNU449, Huh-7 and SMMC7721 cells were kindly

gifted from Dr. Mingzhou Guo (Department of Gastroenterology

and Hepatology; Chinese PLA General Hospital; Beijing, China)

and were cultured in RPMI 1640 medium with 10% FCS. Fugene

HD-mediated transfection was used according to the manufac-

turer’s instructions (Roche). Stable transfectants of SMMC7721-

FXYD6 and SMMC7721-mock were established in the presence of

2 mg/mL G418.

FACS (fluorescence activated cell sorting) analysis

1 × 105 cells were stained with FD10 (2 μg/mL) for 1 h at 4°C

and followed by Alexa Fluor 488-conjugated anti-mouse second-

ary antibody for 45 min at 4°C. The stained cells were ana-

lyzed for green fluorescence (FL1) with a FACSCalibur (Becton

Dickinson).

Surface plasmon resonance (SPR)

SPR experiments were performed using the Biacore T100 system

(GE Healthcare) and the binding analyses were carried out at room

temperature in 1× Phosphate Buffered Saline (PBS) with 0.05%

Tween 20. FD10 was immobilized to the CM5 sensor chip (GE

Healthcare) via standard N-hydroxysuccinimide and N-ethyl-N-

(dimethylaminopropyl) carbodiimide activation. After immobilization,

neutralization was done with 1.0 mol/L ethanolamine. The second

flow channel on the same chip was activated/neutralized in a

similar way and used as a negative channel. Increasing concen-

trations of purified FXYD6 protein were injected over the flow

channels. FXYD6 was analyzed at 5 different concentrations,

ranging from 0.15–12.15 μmol/L. The kinetic and equilibrium

parameters (KD) values were calculated by fitting the raw sensor-

gram with the 1:1 drifting baseline-binding model by using Biacore

T100 evaluation software.
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The commercial human tissue array

The use of human tissue assay was with informed consent and was

approved by the Ethics Committee of the Institute of Biophysics,

Chinese Academy of Science. This array (Aomei Biotechnology Co.

Xi’an, China) includes a total of 397 human tissue specimens from

different persons as following: 91 liver tissues (56 HCC versus 35

normal liver), 23 thyroid tissues (17 cancerous versus 6 normal), 19

prostate tissues (13 cancerous versus 6 normal), 23 colon tissues

(17 cancerous versus 6 normal), 24 brain tissues (17 cancerous

versus 7 normal), 25 uterus tissues (20 cancerous versus 5 normal),

21 bladder tissues (20 cancerous versus 1 normal), 36 ovarian tis-

sues (30 cancerous versus 6 normal), 38 breast tissues (29 can-

cerous versus 9 normal), 27 testis tissues (21 cancerous versus 6

normal), 26 lung tissues (25 cancerous versus 1 normal), 23 stom-

ach tissues (18 cancerous versus 5 normal), 21 pancreas tissues

(15 cancerous versus 6 normal).

Immunohistochemistry

For DAB staining, the commercial human tissue array was depa-

raffinized and stained firstly with FD10 (1 μg/mL), then incubated

with Biotin-conjugated anti-mouse secondary antibody (ZSGB-BIO)

and horseradish peroxidase-conjugated streptavidin (Thermo

Fisher). The binding was detected by DAB solution (ZSGB-BIO).

The tissues were then counter stained using hematoxylin (ZSGB-

BIO). Images were taken with an OLYMPUS BX51 microscope with

an UPlanFL N digital camera.

For immunohisto-fluorescence, the commercial human tissue

array (AOMEI) was deparaffinized and co-stained with both anti-

FXYD6 mAb FD10 (1 μg/mL) and anti-Na+/K+-ATPase α1 subunit

antibody, followed by fluorescent-labeled secondary antibody. Nuclei

were stained with DAPI. Pictures were taken with a confocal laser

scanning microscope (Olympus FV1000) with an Olympus IX81

digital camera.

The scoring algorithms of the immunohistochemistry

As scoring algorithms of the FXYD6 immunohistochemistry have not

been optimized and standardized, we interpreted the cytoplasmic and

nuclear staining collectively as listed in Table S1. The German semi-

quantitative scoring system (Han et al., 2009) was adopted with some

modification for scoring the results. Everyhuman tissuespecimenwas

given a score according to the intensity of the nuclear and cytoplasmic

staining (no staining = 0; weak staining = 1; moderate staining = 2;

strong staining = 3). The extent of stained cells was given as below:

0% = 0, 1%–10% = 1, 11%–50% = 2, 51%–80% = 3, and 81%–

100% = 4. The final immuno-reactive score was determined by mul-

tiplying the intensity andextent of positivity scoresof stainedcells,with

a minimum score of 0 and a maximum score of 12.

The threshold for differentiating between final positive and neg-

ative immunostaining was set at 4 for interpretation. A negative

staining was classified as having an immunostaining score of 0–3;

whereas a positive staining was classified as having an immuno-

staining score of 4–12 (at least moderately positive in at least 11%–

50% of cells). Furthermore, a score of 4–6 is considered as low

FXYD6 expression; whereas score of 7–9 means moderate

expression and score of 10–12 means high expression.

RNA interference

SiRNA against FXYD6 targeting its non-coding region and negative

control siRNA (siRNA-nc) were from Invitrogen. The sequences of

the siRNAs are as following. SiRNA-FXYD6: forward, 5′-CUGGCAG

GCAAUAGUUGAAdTdT-3′; reverse, 5′-UUCAACUAUUGCCUGCC

AGdTdT-3′; siRNA-nc: forward, 5′-CUUCAGCCUCAGCUUGCCGd

TdT-3′; reverse, 5′-CGGCAAGCUGACCCUGAAGdTdT-3. The siR-

NA targeting FXYD6 does not affect the ectogenic FXYD6. For

siRNA transfections, cells were transfected with 50 nmol/L siRNA

and then incubated for at least 36 h at 37°C and 5% CO2.

Cell proliferation analysis

After the appropriate treatments, cells were trypsinized and seeded

in 96-well plates at a density of 4 × 103 cells/well in 100 μL of

complete medium (or containing 2 μmol/L PP2 or 5 μmol/L U0126 in

the inhibition assay, or 100 μg/mL FD10 in the antibody blocking

assay) and cultured for 24, 48, 72 and 96 h. After 2 h incubation with

10 μL of CCK-8 (Cell Counting Kit-8, DOJINDO), the optical density

was measured at 450 nm.

Cell migration analysis

Cell migration was analyzed using the Boyden chamber assay (8-

μm pore size; Corning). After the appropriate treatments, cells were

seeded in the upper chamber at a density of 5 × 103 cells/well in

100 μL of serum-free medium (or containing 2 μmol/L PP2 or

5 μmol/L U0126 in the inhibition assay, or 100 μg/mL FD10 in the

antibody blocking assay). 200 μL complete medium was added to

the lower chamber. After culture for 7 h at 37°C, cells remaining at

the upper surface of the membrane were removed using a swab.

The cells, migrated to the lower membrane surface, are repre-

sentative of the migrated cells. After fixation with 4% paraformal-

dehyde and staining with 0.1% crystal violet solution, the cells

passed through the filter were counted and plotted as the number

of migrated cells.

Co-immunoprecipitation

Cells were lysed in culture dishes by adding 0.5 mL of ice-cold RIPA

(radioimmunoprecipitation assay) lysis buffer for 45 min. The

supernatants were collected by centrifugation at 12,000 g for 15 min

at 4°C and then precleared with the protein G PLUS-Agarose beads

(Santa Cruz) to remove the non-specific protein G-bounded proteins.

The cleared lysate was then incubated with FD10 (5 μg/mL) at 4°C

overnight, followed by incubation with the protein G PLUS-Agarose

beads for 4 h. Immunoprecipitates were washed 3 times with lysis

buffer and then analyzed by immunoblotting.

Immunofluorescence

Cells were seeded on slides cultured in 6-well plates. After various

treatments, the cells were washed with PBS, fixed in acetone/

methanol (1:1) for 30 s, permeabilized with 0.1% Triton X-100,

blocked with 5% normal donkey serum for 60 min at 37°C, and then

incubated with anti-FXYD6 (FD10, 1 μg/mL) and anti-Na+/K+-ATP-

ase α1 antibodies for 1 h. Then incubation with fluorescent-labeled
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secondary Abs for 45 min at 37°C, and nuclei were stained with

DAPI. Confocal laser scanning microscope (Olympus FLUOVIEW

FV1000) with an Olympus IX81 digital camera was used for photos

collection.

Xenografted tumor formation in nude mice

Female 4-week-old BALB/c nude mice were injected with 5 × 106

SMMC7721-mock or SMMC7721-FXYD6 cells subcutaneously into

the backs (6 mice per group). For antibody treatment, xenografts of

human tumor cell lines were produced by injecting 1 × 106 HepG2

cells subcutaneously into the backs of the mice. When tumors

reached a diameter of 0.5–0.6 cm, themice were grouped (5 mice per

group) and intraperitoneally injected with mIgG or purified FD10 at a

dose of 200 μg per mouse twice per week. Tumor size was measured

twice per week and tumor volume was determined according to the

following equation: tumor size = width2 × length × (1/2).

Statistical analysis

All experiments were conducted in triplicate. Data are shown as

mean ± SEM. The difference of FXYD6 expression levels in human

tissues was analyzed with a χ2 test. Statistical differences were

determined by unpaired Student’s t tests; except the statistical dif-

ferences of the levels of the pY418-Src, p-ERK and Na+/K+-ATPase

α1 subunit were determined by paired Student’s t tests. P < 0.05 was

considered statistical significance.
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