4 research outputs found

    Single dose of L-dopa makes extinction memories context-independent and prevents the return of fear

    No full text
    Traumatic events can engender persistent excessive fear responses to trauma reminders that may return even after successful treatment. Extinction, the laboratory analog of behavior therapy, does not erase conditioned fear memories but generates competing, fear-inhibitory "extinction memories" that, however, are tied to the context in which extinction occurred. Accordingly, a dominance of fear over extinction memory expression--and, thus, return of fear--is often observed if extinguished fear stimuli are encountered outside the extinction (therapy) context. We show that postextinction administration of the dopamine precursor L-dopa makes extinction memories context-independent, thus strongly reducing the return of fear in both mice and humans. Reduced fear is accompanied by decreased amygdala and enhanced ventromedial prefrontal cortex activation in both species. In humans, ventromedial prefrontal cortex activity is predicted by enhanced resting-state functional coupling of the area with the dopaminergic midbrain during the postextinction consolidation phase. Our data suggest that dopamine-dependent boosting of extinction memory consolidation is a promising avenue to improving anxiety therapy

    Converging evidence for an impact of a functionalNOSgene variation on anxiety-related processes

    No full text
    Being a complex phenotype with substantial heritability, anxiety and related phenotypes are characterized by a complex polygenic basis. Thereby, one candidate pathway is neuronal nitric oxide (NO) signaling, and accordingly, rodent studies have identified NO synthase (NOS-I), encoded by NOS1, as a strong molecular candidate for modulating anxiety and hippocampus-dependent learning processes. Using a multi-dimensional and -methodological replication approach, we investigated the impact of a functional promoter polymorphism (NOS1-ex1f-VNTR) on human anxiety-related phenotypes in a total of 1019 healthy controls in five different studies. Homozygous carriers of the NOS1-ex1f short-allele displayed enhanced trait anxiety, worrying and depression scores. Furthermore, short-allele carriers were characterized by increased anxious apprehension during contextual fear conditioning. While autonomous measures (fear-potentiated startle) provided only suggestive evidence for a modulatory role of NOS1-ex1f-VNTR on (contextual) fear conditioning processes, neural activation at the amygdala/anterior hippocampus junction was significantly increased in short-allele carriers during context conditioning. Notably, this could not be attributed to morphological differences. In accordance with data from a plethora of rodent studies, we here provide converging evidence from behavioral, subjective, psychophysiological and neuroimaging studies in large human cohorts that NOS-I plays an important role in anxious apprehension but provide only limited evidence for a role in (contextual) fear conditioning
    corecore