154 research outputs found

    Transient hot-film sensor response in a shock tube

    Get PDF
    Shock tube experiments were performed to determine the response of a hot-film sensor, mounted flush on the side wall of a shock tube, to unsteady flow behind a normal shock wave. The present experiments attempt to isolate the response of the anemometer due only to the change in convective heat transfer at the hot-film surface. The experiments, performed at low supersonic shock speeds in air, are described along with the data acquisition procedure. The change in convective heat transfer is deduced from the data and the results are compared with those from transient boundary layer theory and another set of experimental results. Finally, a transient local heat transfer coefficient is formulated for use as the forcing function in a hot-film sensor instrument model simulation

    Condensin goes with the family but not with the flow

    Get PDF
    New work on genome-wide condensin binding highlights similarities and differences from cohesin

    Convective response of a wall-mounted hot-film sensor in a shock tube

    Get PDF
    Shock tube experiments were performed in order to determine the response of a single hot-film element of a sensor array to transiently induced flow behind weak normal shock waves. The experiments attempt to isolate the response due only to the change in convective heat transfer at the hot-film surface mounted on the wall of the shock tube. The experiments are described, the results being correlated with transient boundary layer theory and compared with an independent set of experimental results. One of the findings indicates that the change in the air properties (temperature and pressure) precedes the air mass transport, causing an ambiguity in the sensor response to the development of the velocity boundary layer. Also, a transient, local heat transfer coefficient is formulated to be used as a forcing function in an hot-film instrument model and simulation which remains under investigation

    Multilevel Deconstruction of the In Vivo Behavior of Looped DNA-Protein Complexes

    Get PDF
    Protein-DNA complexes with loops play a fundamental role in a wide variety of cellular processes, ranging from the regulation of DNA transcription to telomere maintenance. As ubiquitous as they are, their precise in vivo properties and their integration into the cellular function still remain largely unexplored. Here, we present a multilevel approach that efficiently connects in both directions molecular properties with cell physiology and use it to characterize the molecular properties of the looped DNA-lac repressor complex while functioning in vivo. The properties we uncover include the presence of two representative conformations of the complex, the stabilization of one conformation by DNA architectural proteins, and precise values of the underlying twisting elastic constants and bending free energies. Incorporation of all this molecular information into gene-regulation models reveals an unprecedented versatility of looped DNA-protein complexes at shaping the properties of gene expression.Comment: Open Access article available at http://www.plosone.org/article/fetchArticle.action?articleURI=info%3Adoi%2F10.1371%2Fjournal.pone.000035

    Protein flexibility directs DNA recognition by the papillomavirus E2 proteins

    Get PDF
    Although DNA flexibility is known to play an important role in DNA–protein interactions, the importance of protein flexibility is less well understood. Here, we show that protein dynamics are important in DNA recognition using the well-characterized human papillomavirus (HPV) type 6 E2 protein as a model system. We have compared the DNA binding properties of the HPV 6 E2 DNA binding domain (DBD) and a mutant lacking two C-terminal leucine residues that form part of the hydrophobic core of the protein. Deletion of these residues results in increased specific and non-specific DNA binding and an overall decrease in DNA binding specificity. Using 15N NMR relaxation and hydrogen/deuterium exchange, we demonstrate that the mutation results in increased flexibility within the hydrophobic core and loop regions that orient the DNA binding helices. Stopped-flow kinetic studies indicate that increased flexibility alters DNA binding by increasing initial interactions with DNA but has little or no effect on the structural rearrangements that follow this step. Taken together these data demonstrate that subtle changes in protein dynamics have a major influence on protein–DNA interactions

    Nucleoporin Mediated Nuclear Positioning and Silencing of HMR

    Get PDF
    The organization of chromatin domains in the nucleus is an important factor in gene regulation. In eukaryotic nuclei, transcriptionally silenced chromatin clusters at the nuclear periphery while transcriptionally poised chromatin resides in the nuclear interior. Recent studies suggest that nuclear pore proteins (NUPs) recruit loci to nuclear pores to aid in insulation of genes from silencing and during gene activation. We investigated the role of NUPs at a native yeast insulator and show that while NUPs localize to the native tDNA insulator adjacent to the silenced HMR domain, loss of pore proteins does not compromise insulation. Surprisingly we find that NUPs contribute to silencing at HMR and are able to restore silencing to a silencing-defective HMR allele when tethered to the locus. We show that the perinuclear positioning of heterochromatin is important for the NUP-mediated silencing effect and find that loss of NUPs result in decreased localization of HMR to the nuclear periphery. We also show that loss of telomeric tethering pathways does not eliminate NUP localization to HMR, suggesting that NUPs may mediate an independent pathway for HMR association with the nuclear periphery. We propose that localization of NUPs to the tDNA insulator at HMR helps maintain the intranuclear position of the silent locus, which in turn contributes to the fidelity of silencing at HMR

    Targeted Sister Chromatid Cohesion by Sir2

    Get PDF
    The protein complex known as cohesin binds pericentric regions and other sites of eukaryotic genomes to mediate cohesion of sister chromatids. In budding yeast Saccharomyces cerevisiae, cohesin also binds silent chromatin, a repressive chromatin structure that functionally resembles heterochromatin of higher eukaryotes. We developed a protein-targeting assay to investigate the mechanistic basis for cohesion of silent chromatin domains. Individual silencing factors were tethered to sites where pairing of sister chromatids could be evaluated by fluorescence microscopy. We report that the evolutionarily conserved Sir2 histone deacetylase, an essential silent chromatin component, was both necessary and sufficient for cohesion. The cohesin genes were required, but the Sir2 deacetylase activity and other silencing factors were not. Binding of cohesin to silent chromatin was achieved with a small carboxyl terminal fragment of Sir2. Taken together, these data define a unique role for Sir2 in cohesion of silent chromatin that is distinct from the enzyme's role as a histone deacetylase

    At the edge of intonation: the interplay of utterance-final F0 movements and voiceless fricative sounds

    Get PDF
    The paper is concerned with the 'edge of intonation' in a twofold sense. It focuses on utterance-final F0 movements and crosses the traditional segment-prosody divide by investigating the interplay of F0 and voiceless fricatives in speech production. An experiment was performed for German with four types of voiceless fricatives: /f/, /s/, /Κƒ/ and /x/. They were elicited with scripted dialogues in the contexts of terminal falling statement and high rising question intonations. Acoustic analyses show that fricatives concluding the high rising question intonations had higher mean centres of gravity (CoGs), larger CoG ranges and higher noise energy levels than fricatives concluding the terminal falling statement intonations. The different spectral-energy patterns are suitable to induce percepts of a high 'aperiodic pitch' at the end of the questions and of a low 'aperiodic pitch' at the end of the statements. The results are discussed with regard to the possible existence of 'segmental intonation' and its implication for F0 truncation and the segment-prosody dichotomy, in which segments are the alleged troublemakers for the production and perception of intonation
    • …
    corecore