20 research outputs found

    Theoretical Study of Coupling Mechanisms between Oxygen Diffusion, Chemical Reaction, Mechanical Stresses in a Solid-Gas Reactive System

    Full text link
    This paper offers a study of oxygen dissolution into a solid, and its consequences on the mechanical behaviour of the material. In fact, mechanical strains strongly influence the oxidation processes and may be, in some materials, responsible for cracking. To realize this study, mechanical considerations are introduced into the classical diffusion laws. Simulations were made for the particular case of uranium dioxide, which undergoes the chemical fragmentation. According to our simulations, the hypothesis of a compression stress field into the oxidised UO2 compound near the internal interface is consistent with some oxidation mechanisms of oxidation experimentally observed. More generally, this work will be extended to the simulation to an oxide layer growth on a metallic substrate

    A thermodynamic approach of the mechano-chemical coupling during the oxidation of uranium dioxide

    Get PDF
    International audienceThe aim of the present work is to introduce a thermodynamic model to describe the growth of an oxide layer on a metallic substrate. More precisely, this paper offers a study of oxygen dissolution into a solid, and its consequences on the apparition of mechanical stresses. They strongly influence the oxidation processes and may be, in some materials, responsible for cracking. To realize this study, mechanical considerations are introduced into the classical diffusion laws. Simulations were made for the particular case of uranium dioxide, which undergoes the chemical fragmentation. According to our simulations, the hypothesis of a compression stress field into the oxidised UO2 compound near the internal interface is consistent with the interpretation of the mechanisms of oxidation observed experimentally

    Internal Interface Strains Effects on UO2/U3O7 Oxidation Behaviour

    Get PDF
    The growth of a U3O7 oxide layer during the anionic oxidation of UO2 pellets induced very important mechanical stresses due to the crystallographic lattice parameters differences between UO2 and its oxide. These stresses, combined with the chemical processes of oxidation, can lead to the cracking of the system, called chemical fragmentation. We study the crystallographic orientation of the oxide lattice growing at the surface of UO2, pointing the fact that epitaxy relations at interface govern the coexistence of UO2 and U3O7. In this work, several results are given: - Determination of the epitaxy relations between the substrate and its oxide thanks to the Bollmann's method; epitaxy strains are deduced. - Study of the coexistence of different domains in the U3O7 (crystallographic compatibility conditions at the interface between two phases: Hadamard conditions). - FEM simulations of a multi-domain U3O7 connected to a UO2 substrate explain the existence of a critical thickness of U3O7 layer

    Dislocation interaction with C in alpha-Fe: a comparison between atomic simulations and elasticity theory

    Get PDF
    The interaction of C atoms with a screw and an edge dislocation is modelled at an atomic scale using an empirical Fe-C interatomic potential based on the Embedded Atom Method (EAM) and molecular statics simulations. Results of atomic simulations are compared with predictions of elasticity theory. It is shown that a quantitative agreement can be obtained between both modelling techniques as long as anisotropic elastic calculations are performed and both the dilatation and the tetragonal distortion induced by the C interstitial are considered. Using isotropic elasticity allows to predict the main trends of the interaction and considering only the interstitial dilatation will lead to a wrong interaction

    Modélisation de phénomènes locaux : vers leur prise en compte dans la simulation de la cinétique d'oxydation d'un métal.

    No full text
    The oxidation of metals is a complex process involving several mechanisms that take place at different length scale (macroscopic and microscopic). In this work, we try to integrate local phenomena (microscopic scale) in macroscopic models, especially to the modelling of the metal oxidation kinetics. The study is divided in two parts ; the first one based on non-equilibrium thermodynamics allows us to obtain the evolution laws of the system metal/oxyde, those were used to modelling oxidation kinetics. The second one is microscopic ; it consists in a study of the thermo-mechanical behaviour of various aluminium surfaces by molecular dynamic and the calculation of their surface energy density. We have also developed an empirical formulation for the surface free energy as a function of deformation and temperature.La modélisation de la cinétique d'oxydation des métaux est complexe car elle conjugue des phénomènes tant macroscopiques que microscopiques. Ce travail a donc pour but d'incorporer dans des modèles macroscopiques, l'influence des phénomènes locaux (microscopiques) et plus particulièrement d'appliquer cette approche à la modélisation des cinétiques d'oxydation. Cette étude se divise en deux grandes parties, l'une macroscopique basée sur la thermodynamique irréversible permettant d'obtenir les lois d'évolution du système métal oxyde afin de les résoudre numériquement pour modéliser les cinétiques d'oxydations. La seconde, microscopique consiste en l'étude par dynamique moléculaire du comportement thermomécanique de différentes surfaces d'aluminium et du calcul de leur densité d'énergie de surface. Ceci est complété par la réalisation d'un modèle empirique permettant d'obtenir la valeur de la densité d'énergie de surface en fonction de la déformation et de la température

    Modeling the snoek peak by coupling molecular dynamics and kinetic monte-carlo methods

    No full text
    International audienc
    corecore