2,350 research outputs found

    Tensile Strength of Malosma Laurina Leaves in Wet and Dry Conditions

    Get PDF
    Pepperdine University is one located in one of the most diverse places of the world. It is located in the Mediterranean which occupies less than 5% of the earth\u27s landmass and is only found in five areas which includes California. On the campus there are several canyons. One of the canyons is called Winter Canyon. The canyon contained a plant called Malosma laurina which is located in a riparian environment and a chaparral environment. The plant grows in both areas however, our hypothesis was that the dry plants\u27 leaves would demonstrate more plasticity. The soil humidity was also measured to compare the difference between the two and there was a significant difference. The average humidity for the wet soil was 43.5% and the dry was 22.5%. Our hypothesis was proven to be true after analyzing the results of the instron machine. The tensile strength was higher among dry leaves

    Department of Homeland Security Science and Technology Directorate: Developing Technology to Protect America

    Get PDF
    In response to a congressional mandate and in consultation with Department of Homeland Security's (DHS) Science and Technology Directorate (S&T), the National Academy conducted a review of S&T's effectiveness and efficiency in addressing homeland security needs. This review included a particular focus that identified any unnecessary duplication of effort, and opportunity costs arising from an emphasis on homeland security-related research. Under the direction of the National Academy Panel, the study team reviewed a wide variety of documents related to S&T and homeland security-related research in general. The team also conducted interviews with more than 200 individuals, including S&T officials and staff, officials from other DHS component agencies, other federal agencies engaged in homeland security-related research, and experts from outside government in science policy, homeland security-related research and other scientific fields.Key FindingsThe results of this effort indicated that S&T faces a significant challenge in marshaling the resources of multiple federal agencies to work together to develop a homeland security-related strategic plan for all agencies. Yet the importance of this role should not be underestimated. The very process of working across agencies to develop and align the federal homeland security research enterprise around a forward-focused plan is critical to ensuring that future efforts support a common vision and goals, and that the metrics by which to measure national progress, and make changes as needed, are in place

    Patient experience and challenges in group concept mapping for clinical research.

    Get PDF
    BACKGROUND AND OBJECTIVE: Group concept mapping (GCM) is a research method that engages stakeholders in generating, structuring and representing ideas around a specific topic or question. GCM has been used with patients to answer questions related to health and disease but little is known about the patient experience as a participant in the process. This paper explores the patient experience participating in GCM as assessed with direct observation and surveys of participants. METHODS: This is a secondary analysis performed within a larger study in which 3 GCM iterations were performed to engage patients in identifying patient-important outcomes for diabetes care. Researchers tracked the frequency and type of assistance required by each participant to complete the sorting and rating steps of GCM. In addition, a 17-question patient experience survey was administered over the telephone to the participants after they had completed the GCM process. Survey questions asked about the personal impact of participating in GCM and the ease of various steps of the GCM process. RESULTS: Researchers helped patients 92 times during the 3 GCM iterations, most commonly to address software and computer literacy issues, but also with the sorting phase itself. Of the 52 GCM participants, 40 completed the post-GCM survey. Respondents averaged 56 years of age, were 50% female and had an average hemoglobin A1c of 9.1%. Ninety-two percent (n = 37) of respondents felt that they had contributed something important to this research project and 90% (n = 36) agreed or strongly agreed that their efforts would help others with diabetes. Respondents reported that the brainstorming session was less difficult when compared with sorting and rating of statements. DISCUSSION: Our results suggest that patients find value in participating in GCM. Patients reported less comfort with the sorting step of GCM when compared with brainstorming, an observation that correlates with our observations from the GCM sessions. Researchers should consider using paper sorting methods and objective measures of sorting quality when using GCM in patient-engaged research to improve the patient experience and concept map quality

    MEMS Louvers for Thermal Control

    Get PDF
    Mechanical louvers have frequently been used for spacecraft and instrument thermal control purposes. These devices typically consist of parallel or radial vanes, which can be opened or closed to vary the effective emissivity of the underlying surface. This project demonstrates the feasibility of using Micro-Electromechanical Systems (MEMS) technology to miniaturize louvers for such purposes. This concept offers the possibility of substituting the smaller, lighter weight, more rugged, and less costly MEMS devices for such mechanical louvers. In effect, a smart skin that self adjusts in response to environmental influences could be developed composed of arrays of thousands of miniaturized louvers. Several orders of magnitude size, weight, and volume decreases are potentially achieved using micro-electromechanical techniques. The use of this technology offers substantial benefits in spacecraft/instrument design, integration and testing, and flight operations. It will be particularly beneficial for the emerging smaller spacecraft and instruments of the future. In addition, this MEMS thermal louver technology can form the basis for related spacecraft instrument applications. The specific goal of this effort was to develop a preliminary MEMS device capable of modulating the effective emissivity of radiators on spacecraft. The concept pursued uses hinged panels, or louvers, in a manner such that heat emitted from the radiators is a function of louver angle. An electrostatic comb drive or other such actuator can control the louver position. The initial design calls for the louvers to be gold coated while the underlying surface is of high emissivity. Since, the base MEMS material, silicon, is transparent in the InfraRed (IR) spectrum, the device has a minimum emissivity when closed and a maximum emissivity when open. An initial set of polysilicon louver devices was designed at the Johns Hopkins Applied Physics Laboratory in conjunction with the Thermal Engineering Branch at NASA's Goddard Space Flight Center

    Apollo Lightcraft Project

    Get PDF
    This second year of the NASA/USRA-sponsored Advanced Aeronautical Design effort focused on systems integration and analysis of the Apollo Lightcraft. This beam-powered, single-stage-to-orbit vehicle is envisioned as the shuttlecraft of the 21st century. The five person vehicle was inspired largely by the Apollo Command Module, then reconfigured to include a new front seat with dual cockpit controls for the pilot and co-pilot, while still retaining the 3-abreast crew accommodations in the rear seat. The gross liftoff mass is 5550 kg, of which 500 kg is the payload and 300 kg is the LH2 propellant. The round trip cost to orbit is projected to be three orders of magnitude lower than the current space shuttle orbiter. The advanced laser-driven 5-speed combined-cycle engine has shiftpoints at Mach 1, 5, 11 and 25+. The Apollo Lightcraft can climb into low Earth orbit in three minutes, or fly to any spot on the globe in less than 45 minutes. Detailed investigations of the Apollo Lightcraft Project this second year further evolved the propulsion system design, while focusing on the following areas: (1) man/machine interface; (2) flight control systems; (3) power beaming system architecture; (4) re-entry aerodynamics; (5) shroud structural dynamics; and (6) optimal trajectory analysis. The principal new findings are documented. Advanced design efforts for the next academic year (1988/1989) will center on a one meter+ diameter spacecraft: the Lightcraft Technology Demonstrator (LTD). Detailed engineering design and analyses, as well as critical proof-of-concept experiments, will be carried out on this small, near-term machine. As presently conceived, the LTD could be constructed using state of the art components derived from existing liquid chemical rocket engine technology, advanced composite materials, and high power laser optics

    Prodigious polyphyly in Pleuroceridae (Gastropoda: Cerithioidea)

    Get PDF
    Phylogenomic studies with hundreds or thousands of loci are rare for most invertebrate groups, including freshwater gastropods. This can prevent understanding of phylogeny, which hinders many areas of research. Pleuroceridae is a family of freshwater snails that is highly imperiled and plays an essential role in the ecology of many freshwater systems of the eastern United States. However, the evolutionary history of the family is not understood, and the systematics of the family has not been revised in a modern framework. Pleurocerids display a variety of egg-deposition behaviors and shell shapes, making the family an ideal system for studying evolution of invertebrate life history and morphology. However, past mitochondrial-based phylogenetic analyses have failed to produce meaningful phylogenetic hypotheses, preventing conclusions about pleurocerid systematics and evolution. Here, we generated a novel anchored hybrid enrichment probe set with phylogenetic utility for Pleuroceridae. We sampled pleurocerids from across their range to test the probe set and generated a backbone phylogeny. Our analyses uncovered striking levels of polyphyly among currently accepted genera. Numerous species were also polyphyletic, indicative of unrecognized diversity. Phylogenetic patterns also revealed considerable convergence of shell morphologies. In contrast, anatomical and life history features appeared to be much less homoplastic. Despite generic paraphyly, high support for most major clades and phylogenetic cohesiveness of non-shell characters indicate utility of the AHE probe set for studying pleurocerid evolution

    39Ar - 40Ar Studies of Lherzolitic Shergottites Yamato 000097 and 984028

    Get PDF
    Yamato 984028 (Y984028) was discovered by the Japanese Antarctic Research Expedition (JARE) in 1998 and recently classified as a lherzolitic shergottite with large pyroxene oikocrysts enclosing rounded olivine and chromites. It also contains shock veining and maskelynite. Y984028 is paired with the more recent lherzolitic shergottite finds Y000027/47/97 based on similarities in mineralogy and chemistry, as well as isotopic composition. We present here the studied Ar-39-Ar-40 of Y-984028 whole rock (WR) and pyroxene (Px), in order to gain better understanding of trapped Ar components with a comparison of the possibly-paired Y000097 Ar release

    Phase Operator for the Photon Field and an Index Theorem

    Get PDF
    An index relation dim ker a†a−dim ker aa†=1dim\ ker\ a^{\dagger}a - dim\ ker\ aa^{\dagger} = 1 is satisfied by the creation and annihilation operators a†a^{\dagger} and aa of a harmonic oscillator. A hermitian phase operator, which inevitably leads to dim ker a†a−dim ker aa†=0dim\ ker\ a^{\dagger}a - dim\ ker\ aa^{\dagger} = 0, cannot be consistently defined. If one considers an s+1s+1 dimensional truncated theory, a hermitian phase operator of Pegg and Barnett which carries a vanishing index can be defined. However, for arbitrarily large ss, we show that the vanishing index of the hermitian phase operator of Pegg and Barnett causes a substantial deviation from minimum uncertainty in a characteristically quantum domain with small average photon numbers. We also mention an interesting analogy between the present problem and the chiral anomaly in gauge theory which is related to the Atiyah-Singer index theorem. It is suggested that the phase operator problem related to the above analytic index may be regarded as a new class of quantum anomaly. From an anomaly view point ,it is not surprising that the phase operator of Susskind and Glogower, which carries a unit index, leads to an anomalous identity and an anomalous commutator.Comment: 32 pages, Late
    • …
    corecore