365 research outputs found

    Coincident brane nucleation and the neutralization of \Lambda

    Get PDF
    Nucleation of branes by a four-form field has recently been considered in string motivated scenarios for the neutralization of the cosmological constant. An interesting question in this context is whether the nucleation of stacks of coincident branes is possible, and if so, at what rate does it proceed. Feng et al. have suggested that, at high ambient de Sitter temperature, the rate may be strongly enhanced, due to large degeneracy factors associated with the number of light species living on the worldsheet. This might facilitate the quick relaxation from a large effective cosmological constant down to the observed value. Here, we analyse this possibility in some detail. In four dimensions, and after the moduli are stabilized, branes interact via repulsive long range forces. Because of that, the Coleman-de Luccia (CdL) instanton for coincident brane nucleation may not exist, unless there is some short range interaction which keeps the branes together. If the CdL instanton exists, we find that the degeneracy factor depends only mildly on the ambient de Sitter temperature, and does not switch off even in the case of tunneling from flat space. This would result in catastrophic decay of the present vacuum. If, on the contrary, the CdL instanton does not exist, coindident brane nucleation may still proceed through a "static" instanton, representing pair creation of critical bubbles -- a process somewhat analogous to thermal activation in flat space. In that case, the branes may stick together due to thermal symmetry restoration, and the pair creation rate depends exponentially on the ambient de Sitter temperature, switching off sharply as the temperature approaches zero. Such static instanton may be well suited for the "saltatory" relaxation scenario proposed by Feng et al.Comment: 38 pages, 6 figures. Replaced with typos correcte

    Stable and Unstable Circular Strings in Inflationary Universes

    Full text link
    It was shown by Garriga and Vilenkin that the circular shape of nucleated cosmic strings, of zero loop-energy in de Sitter space, is stable in the sense that the ratio of the mean fluctuation amplitude to the loop radius is constant. This result can be generalized to all expanding strings (of non-zero loop-energy) in de Sitter space. In other curved spacetimes the situation, however, may be different. In this paper we develop a general formalism treating fluctuations around circular strings embedded in arbitrary spatially flat FRW spacetimes. As examples we consider Minkowski space, de Sitter space and power law expanding universes. In the special case of power law inflation we find that in certain cases the fluctuations grow much slower that the radius of the underlying unperturbed circular string. The inflation of the universe thus tends to wash out the fluctuations and to stabilize these strings.Comment: 15 pages Latex, NORDITA 94/14-

    Scalar Three-point Functions in a CDL Background

    Full text link
    Motivated by the FRW-CFT proposal by Freivogel, Sekino, Susskind and Yeh, we compute the three-point function of a scalar field in a Coleman-De Luccia instanton background. We first compute the three-point function of the scalar field making only very mild assumptions about the scalar potential and the instanton background. We obtain the three-point function for points in the FRW patch of the CDL instanton and take two interesting limits; the limit where the three points are near the boundary of the hyperbolic slices of the FRW patch, and the limit where the three points lie on the past lightcone of the FRW patch. We expand the past lightcone three-point function in spherical harmonics. We show that the near boundary limit expansion of the three-point function of a massless scalar field exhibits conformal structure compatible with FRW-CFT when the FRW patch is flat. We also compute the three-point function when the scalar is massive, and explain the obstacles to generalizing the conjectured field-operator correspondence of massless fields to massive fields.Comment: 42 pages + appendices, 10 figures; v2, v3: minor correction

    The evolution of cosmic string loops in Kerr-de Sitter spacetimes

    Full text link
    The equation of cosmic string loops in Kerr-de Sitter spacetimes is derived. Having solved the equation numerically, we find that the loops can expand and exist except for too small ones.Comment: 8 page

    Circular String-Instabilities in Curved Spacetime

    Full text link
    We investigate the connection between curved spacetime and the emergence of string-instabilities, following the approach developed by Loust\'{o} and S\'{a}nchez for de Sitter and black hole spacetimes. We analyse the linearised equations determining the comoving physical (transverse) perturbations on circular strings embedded in Schwarzschild, Reissner-Nordstr\"{o}m and de Sitter backgrounds. In all 3 cases we find that the "radial" perturbations grow infinitely for r→0r\rightarrow 0 (ring-collapse), while the "angular" perturbations are bounded in this limit. For r→∞r\rightarrow\infty we find that the perturbations in both physical directions (perpendicular to the string world-sheet in 4 dimensions) blow up in the case of de Sitter space. This confirms results recently obtained by Loust\'{o} and S\'{a}nchez who considered perturbations around the string center of mass.Comment: 24 pages Latex + 2 figures (not included). Observatoire de Paris, Meudon No. 9305

    Investigation of enhanced second harmonic generation in laser-induced air plasma

    Full text link
    We report a systematic investigation into the processes behind a near hundredfold enhanced second harmonic wave generated from a laser-induced air plasma, by examining the temporal dynamics of the frequency conversion processes, and the polarization of the emitted second harmonic beam. Contrary to typical nonlinear optical processes, the enhanced second harmonic generation efficiency is only observed within a sub-picosecond time window and found to be nearly constant across fundamental pulse durations spanning from 0.1 ps to over 2 ps. We further demonstrate that with the adopted orthogonal pump-probe configuration, the polarization of second harmonic field exhibits a complex dependence on the polarization of both input fundamental beams, contrasting with most of the previous experiments with a single-beam geometry

    Evaluando los factores que afectan a la tasa de mortalidad en la carretera: el caso de Sapo Común Bufo bufo, cerca de un área de reproducción

    Get PDF
    The Common Toad Bufo bufo is the amphibian with the highest rates of road mortality in many European countries. This elevated incidence of road kills has frequently been associated with migration to breeding sites. In this study, we analysed the mortality of the Common Toad in the road network in Catalonia (NE Spain), and investigated the related causative factors on four roads near a breeding site in the Pyrenees. Results suggest that the high mortality rate is due to a combination of factors: toad abundance, traffic density and quality of water bodies for breeding. On the road with the highest incidence of road kills we investigated whether deaths occurred at specific spots or in a random manner. The road was divided into 500 m sections and each section was classified according to biotic (type of vegetation) and abiotic (presence of streams, roadside topography) variables. Multiple correspondence analysis showed that sections with streams crossing under the road had the highest mortality rate, suggesting that such water bodies flowing into the breeding pond are the toads’ main migratory pathways for hibernation and breeding. As toads use the same migratory routes each year, it is critical to identify areas with a high potential mortality so that efficient measures can be designed to increase wildlife permeability, and thereby reduce habitat fragmentation. This methodology could be applied in other areas with high amphibian mortality. Key words: Amphibian, Common Toad, Bufo bufo, Landscape fragmentation, Migration, Mortality, Road permeability, Pyrenees.El Sapo Común Bufo bufo, es el anfibio con mayor tasa de mortalidad en la carretera en numerosos países de Europa. Esta elevada mortalidad se debe principalmente a las migraciones que realiza hacia las zonas de reproducción. En este estudio se analiza la mortalidad del Sapo Común en la red de carreteras de Cataluña (NE España) y más específicamente qué factores influyen sobre dicha mortalidad en cuatro carreteras cercanas a un punto de reproducción en los Pirineos. Los resultados sugieren que la alta tasa de mortalidad se debe a la combinación de tres factores: abundancia de sapos, densidad de tráfico y calidad de los puntos de agua para la reproducción. En la carretera con mayor índice de atropellos, se analizó si existía agregación en los animales atropellados o estos se distribuían al azar. Para ello, la carretera se dividió en tramos de 500 m, cada uno de los cuales se caracterizó por el tipo de vegetación circundante, así como otros factores que pudieran influir sobre la migración de los sapos (p.e. inclinación del margen de la carretera, presencia de riachuelos, etc.). El análisis de correspondencias múltiple demostró que los tramos con torrentes cruzando bajo la carretera presentaban mayor mortalidad. Esto sugiere que dichos torrentes son las vías principales usadas por los sapos para acudir a los puntos de reproducción. Dado que los sapos utilizan cada año las mismas vías migratorias, es fundamental identificar dichos puntos para predecir cuáles presentan mayor mortalidad potencial y así diseñar más eficazmente los mecanismos de permeabilidad para la fauna en las vías de comunicación. Esta metodología puede ser aplicada a otras zonas con elevada mortalidad de anfibios en la red de carreteras. Palabras clave: Anfibio, Sapo Común, Bufo bufo, Fragmentación del paisaje, Migración, Mortalidad, Permeabilidad de la carretera, Pirineos
    • …
    corecore