997 research outputs found

    Crop-Share Leasing Arrangements For Irrigated Land in Kansas

    Get PDF
    Crop Production/Industries, Farm Management,

    Magnetour: Surfing Planetary Systems on Electromagnetic and Multi-Body Gravity Fields

    Get PDF
    In this NIAC Phase One study, we propose a new mission concept, named Magnetour, to facilitate the exploration of outer planet systems and address both power and propulsion challenges. Our approach would enable a single spacecraft to orbit and travel between multiple moons of an outer planet, with no propellant required. Our approach would enable a single spacecraft to orbit and travel between multiple moons of an outer planet, with no propellant nor onboard power source required. To achieve this free-lunch _Grand Tour', we exploit the unexplored combination of magnetic and multi-body gravitational fields of planetary systems, with a unique focus on using a bare tether for power and propulsion. The main objective of the study is to develop this conceptually novel mission architecture, explore its design space, and investigate its feasibility and applicability to enhance the exploration of planetary systems within a 10-year timeframe. Propellantless propulsion technology offers enormous potential to transform the way NASA conducts outer planet missions. We hope to demonstrate that our free-lunch tour concept can replace heavy, costly, traditional chemical-based missions and can open up a new variety of trajectories around outer planets. Leveraging the powerful magnetic and multi-body gravity fields of planetary systems to travel freely among planetary moons would allow for long-term missions and provide unique scientific capabilities and flagship-class science for a fraction of the mass and cost of traditional concepts. New mission design techniques are needed to fully exploit the potential of this new concept.This final report contains the results and findings of the Phase One study, and is organized as follows. First, an overview of the Magnetour mission concept is presented. Then, the research methodology adopted for this Phase One study is described, followed by a brief outline of the main findings and their correspondence with the original Phase One task plan. Next, an overview of the environment of outer planets is provided, including magnetosphere, radiation belt and planetary moons. Then performance of electrodynamic tethers is assessed, as well as other electromagnetic systems. A method to exploit multi-body dynamics is given next. These analyses allow us to carry out a Jovian mission design to gain insight in the benefits of Magnetour. In addition, a spacecraft configuration is presented that fully incorporates the tether in the design. Finally technology roadmap considerations are discussed

    Can majority support save an endangered language? A case study of language attitudes in Guernsey

    Get PDF
    Many studies of minority language revitalisation focus on the attitudes and perceptions of minorities, but not on those of majority group members. This paper discusses the implications of these issues, and presents research into majority andf minority attitudes towards the endangered indigenous vernacular of Guernsey, Channel Islands. The research used a multi-method approach (questionnaire and interview) to obtain attitudinal data from a representative sample of the population that included politicians and civil servants (209 participants). The findings suggested a shift in language ideology away from the post-second world war ‘culture of modernisation’ and monolingual ideal, towards recognition of the value of a bi/trilingual linguistic heritage. Public opinion in Guernsey now seems to support the maintenance of the indigenous language variety, which has led to a degree of official support. The paper then discusses to what extent this ‘attitude shift’ is reflected in linguistic behaviour and in concrete language planning measures

    Effect of Divalproex on Brain Morphometry, Chemistry, and Function in Youth at High-Risk for Bipolar Disorder: A Pilot Study

    Get PDF
    Abstract Objective: Divalproex has been found efficacious in treating adolescents with and at high risk for bipolar disorder (BD), but little is known about the effects of mood stabilizers on the brain itself. We sought to examine the effects of divalproex on the structure, chemistry, and function of specific brain regions in children at high-risk for BD. Methods: A total of 24 children with mood dysregulation but not full BD, all offspring of a parent with BD, were treated with divalproex monotherapy for 12 weeks. A subset of 11 subjects and 6 healthy controls were scanned with magnetic resonance imaging (MRI, magnetic resonance spectroscopy [MRS], and functional MRI [fMRI]) at baseline and after 12 weeks. Results: There were no significant changes in amygdalar or cortical volume found over 12 weeks. Furthermore, no changes in neurometabolite ratios were found. However, we found the degree of decrease in prefrontal brain activation to correlate with degree of decrease in depressive symptom severity. Conclusions: Bipolar offspring at high risk for BD did not show gross morphometric, neurometabolite, or functional changes after 12 weeks of treatment with divalproex. Potential reasons include small sample size, short exposure to medications, or lack of significant neurobiological impact of divalproex in this particular population
    corecore