1,035 research outputs found

    Human Serum Albumin Adsorption on Hydrogel Contact Lenses In Vitro

    Get PDF
    Purpose. To improve the understanding of the formation of protein deposits on hydrogel lenses. Methods. A study of protein adsorption on three commercial hydrogel contact lenses of different materials, Etafilcon A (2-hydroxyethyl methacrylate [HEMA] polymer with sodium methacrylate and 2-ethyl-2-hydroxymediyl-l,3-propanediol trimethacrylate), tefilcon (poly [HEMA] cross-linked and copolymerized with ethylene glycol dimethacrylate), and vifilcon A (methacrylic acid polymer with ethylene glycol dimethacrylate, HEMA and N-vinyl pyrrolidone) was undertaken by using a single protein solution, human serum albumin (HSA), and a radiolabeltracer technique. Results. Static adsorption leading to multilayer adsorption was observed. Complete reversibility for adsorbed HSA on lenses did not exist. Some was tightly bound, whereas most was loosely bound and could be removed easily by rinsing in phosphate-buffered saline. Irreversible adsorption of HSA on the lenses was found to be time dependent and did not reach a maximum value even after 48 hours of adsorption. The amount of HSA adsorbed on the lenses-irreversibly as well as totally adsorbed protein-was in the order of vifilcon A > tefilcon > etafilcon A. Adsorption of HSA on the lenses increases with decreasing pH (range, 7.4 to 4) but always follows the above trend with respect to the different types of lenses. Conclusions. Irreversible binding of HSA on lenses is governed by the kinetics of protein denaturation. Electrostatic interactions may not play a major role in HSA adsorption on hydrogel lenses. Some other factors, such as hydrophobic dehydration, and special monomer units, such as iV-vinyl pyrrolidone in the lens materials, may favor adsorption of HSA. Inves

    Role of carnitine in disease

    Get PDF
    Carnitine is a conditionally essential nutrient that plays a vital role in energy production and fatty acid metabolism. Vegetarians possess a greater bioavailability than meat eaters. Distinct deficiencies arise either from genetic mutation of carnitine transporters or in association with other disorders such as liver or kidney disease. Carnitine deficiency occurs in aberrations of carnitine regulation in disorders such as diabetes, sepsis, cardiomyopathy, malnutrition, cirrhosis, endocrine disorders and with aging. Nutritional supplementation of L-carnitine, the biologically active form of carnitine, is ameliorative for uremic patients, and can improve nerve conduction, neuropathic pain and immune function in diabetes patients while it is life-saving for patients suffering primary carnitine deficiency. Clinical application of carnitine holds much promise in a range of neural disorders such as Alzheimer's disease, hepatic encephalopathy and other painful neuropathies. Topical application in dry eye offers osmoprotection and modulates immune and inflammatory responses. Carnitine has been recognized as a nutritional supplement in cardiovascular disease and there is increasing evidence that carnitine supplementation may be beneficial in treating obesity, improving glucose intolerance and total energy expenditure

    Proteomic analysis of protein deposits on worn daily wear silicone hydrogel contact lenses

    Get PDF
    Purpose: Previous studies have demonstrated deposition of tear proteins onto worn contact lenses. In this study, we used proteomic techniques to analyze the protein deposits extracted from worn daily wear silicone hydrogel contact lenses in combination with different lens care solutions. Methods: Worn lenses were collected and protein deposits extracted using urea and surfactant. Protein extracts were desalted, concentrated, and then separated using one-dimensional gel electrophoresis. Individual protein components in extracts were identified using liquid chromatography combined with tandem mass spectrometry (LC-MS-MS) after trypsin digestion. Results: One-dimensional gel electrophoresis revealed that lysozyme and other small proteins (around 20 kDa) were the most abundant proteins in the extracts. LC-MS-MS revealed a wide array of proteins in lens extracts with lysozyme and lipocalin 1 being the most commonly identified in deposit extracts. Conclusions: Worn contact lenses deposit a wide array of proteins from tear film and other sources. Protein deposit profiles varied and were specific for each contact lens material.9 page(s

    Optical Design and Status of the Large Ultra-Violet Optical Infrared Surveyor (LUVOIR)

    Get PDF
    "In preparation for the Astrophysics 2020 Decadal Survey NASA's Goddard Space Flight Center is studying a segmented aperture telescope with broad astrophysics, solar system, and exoplanet science capability called the Large Ultra-Violet Optical Infrared Surveyor (LUVOIR). This telescope design incorporates many heritage design concepts from the Hubble Space Telescope (HST), James Webb Space Telescope (JWST), and the Wide-field Infrared Survey Telescope (WFIRST). This includes similar ultraviolet instrumentation from HST, deployable segmented optics from JWST, and high-contrast coronagraph technology from WFIRST. Several optical design trades were completed to maximize the science product while maintaining reasonable packaging and fabrication constraints. Other technology developments such as freeform optics, UV enhanced coatings, coronagraph design, and ultra-stable mirrors are being studied to further improve the observatory performance

    Dietary Patterns and Risk of Colorectal Cancer Subtypes Classified by Fusobacterium nucleatum in Tumor Tissue

    Get PDF
    Importance—Fusobacterium nucleatum appears to play a role in colorectal carcinogenesis through suppression of host immune response to tumor. Evidence also suggests that diet influences intestinal F. nucleatum. However, the role of F. nucleatum in mediating the relationship between diet and the risk of colorectal cancer is unknown. Objective—To test the hypothesis that the associations of prudent diets (rich in whole grains and dietary fiber) and Western diets (rich in red and processed meat, refined grains, and desserts) with colorectal cancer risk may differ according to the presence of F. nucleatum in tumor tissue. Design—Prospective cohort study. Setting—The Nurses’ Health Study (1980–2012) and the Health Professionals Follow-up Study (1986–2012). Participants—121,700 US female nurses and 51,529 US male health professionals aged 30 to 55 years and 40 to 75 years, respectively, at enrollment. Exposures—Prudent and Western dietary patterns. Main Outcomes and Measures—Incidence of colorectal carcinoma subclassified by F. nucleatum status in tumor tissue, determined by quantitative polymerase chain reaction. Results—We documented 1,019 incident colon and rectal cancer cases with available F. nucleatum data among predominantly white 137,217 individuals over 26–32 years of follow-up encompassing 3,643,562 person-years. The association of prudent diet with colorectal cancer significantly differed by tissue F. nucleatum status (Pheterogeneity = .01). Prudent diet score was associated with a lower risk of F. nucleatum-positive cancers [Ptrend = .003; multivariable hazard ratio of 0.43 (95% confidence interval 0.25–0.72) for the highest vs. the lowest prudent score quartile], but not with F. nucleatum-negative cancers (Ptrend = .47). Dietary component analyses suggested possible differential associations for the cancer subgroups according to intakes of dietary fiber (Pheterogeneity = .02). There was no significant heterogeneity between the subgroups according to Western dietary pattern scores (Pheterogeneity = .23). Conclusions and Relevance—Prudent diets rich in whole grains and dietary fiber are associated with a lower risk for F. nucleatum-positive colorectal cancer but not F. nucleatum-negative cancer, supporting a potential role for intestinal microbiota in mediating the association between diet and colorectal neoplasms

    Overview of the Optomechanical Design of the LUVOIR Instruments

    Get PDF
    The Large Ultraviolet/Optical/Infrared Surveyor (LUVOIR) is a space telescope being submitted for review to the 2020 Decadal Survey in Astronomy and Astrophysics. Its science objectives include both direct imaging and spectral characterization of habitable exoplanets around sun-like stars, the study of planet, star, and galaxy formation, the transfer of matter between different galaxies, and the remote sensing of objects within the Solar System. Two architectures have been designed: a 15 m diameter on-axis telescope (LUVOIR-A) and an 8 m off-axis telescope (LUVOIR-B). This paper discusses the opto-mechanical design of the three LUVOIR instruments: the High Definition Imager (HDI), the LUVOIR UV Multi-object Spectrograph (LUMOS), and the Extreme Coronagraph for Living Planetary Systems (ECLIPS). For both the LUVOIR-A and LUVOIR-B variants of each instrument, optical design specifications are presented including first-order constraints, packaging requirements, and optical performance metrics. These factors are used to illustrate the final design of each instrument and LUVOIR as a whole. In addition to the optical designs, mechanical models are presented for each instrument showing the optical mounts, mechanisms, support structure, etc

    The Large UV/Optical/Infrared Surveyor (LUVOIR): Decadal Mission Concept Study Update

    Get PDF
    In preparation for the 2020 Decadal Survey in Astronomy and Astrophysics, NASA commissioned the study of four large mission concepts: the Large UV/Optical/Infrared Surveyor (LUVOIR), the Habitable Exoplanet Imager (HabEx), the far-infrared surveyor Origins Space Telescope (OST), and the X-ray surveyor Lynx. The LUVOIR Science and Technology Definition Team (STDT) has identified a broad range of science objectives for LUVOIR that include the direct imaging and spectral characterization of habitable exoplanets around sun-like stars, the study of galaxy formation and evolution, the exchange of matter between galaxies, star and planet formation, and the remote sensing of Solar System objects. The LUVOIR Study Office, located at NASA's Goddard Space Flight Center (GSFC), is developing two mission concepts to achieve the science objectives. LUVOIR-A is a 15-meter segmented-aperture observatory that would be launched in an 8.4-m extended fairing on the Space Launch System (SLS) Block 2 configuration. LUVOIR-B is an 8-meter unobscured segmented aperture telescope that fits in a smaller, conventional 5-meter fairing, but still requires the lift capacity of the SLS Block 1B Cargo vehicle. Both concepts include a suite of serviceable instruments: the Extreme Coronagraph for Living Planetary Systems (ECLIPS), an optical/near-infrared coronagraph capable of delivering 10 (sup minus10) contrast at inner working angles as small as 2 lambda divided by D; the LUVOIR UV Multi-object Spectrograph (LUMOS), which will provide low- and medium-resolution UV (100-400 nanometer) multi-object imaging spectroscopy in addition to far-UV imaging; the High Definition Imager (HDI), a high-resolution wide-field-of-view NUV-Optical-NIR imager. LUVOIR-A also has a fourth instrument, Pollux, a high-resolution UV spectro-polarimeter being contributed by Centre National d'Etudes Spatiales (CNES). This paper provides an overview of the LUVIOR science objectives, design drivers, and mission concepts

    The Large UV/Optical/Infrared Surveyor (LUVOIR): Decadal Mission Study Update

    Get PDF
    NASA commissioned the study of four large mission concepts, including the Large Ultraviolet / Optical / Infrared (LUVOIR) Surveyor, to be evaluated by the 2020 Decadal Survey in Astrophysics. In response, the Science and Technology Definition Team (STDT) identified a broad range of science objectives for LUVOIR that include the direct imaging and spectral characterization of habitable exoplanets around sun-like stars, the study of galaxy formation and evolution, the exchange of matter between galaxies, star and planet formation, and the remote sensing of Solar System objects. To meet these objectives, the LUVOIR Study Office, located at NASA's Goddard Space Flight Center (GSFC), completed the first design iteration of a 15-m segmented-aperture observatory that would be launched by the Space Launch System (SLS) Block 2 configuration. The observatory includes four serviceable instruments: the Extreme Coronagraph for Living Planetary Systems (ECLIPS), an optical / near-infrared coronagraph capable of delivering 10(exp -10) contrast at inner working angles as small as 2 lambda/D; the LUVOIR UV Multi-object Spectrograph (LUMOS), which will provide low- and medium-resolution UV (100 - 400 nm) multi-object imaging spectroscopy in addition to far-UV imaging; the High Definition Imager (HDI), a high-resolution wide-field-of-view NUV-Optical-NIR imager; and Pollux, a high-resolution UV spectro-polarimeter being contributed by Centre National d'Etudes Spatiales (CNES). The study team has executed a second design iteration to further improve upon the 15-m concept, while simultaneously studying an 8-m concept. In these proceedings, we provide an update on these two architectures
    • …
    corecore