21 research outputs found

    The GnRH receptor and the response of gonadotrope cells to GnRH pulse frequency code. A story of an atypical adaptation of cell function relying on a lack of receptor homologous desensitization.

    Get PDF
    Brain control of the reproductive system is mediated through hypothalamic gonadotropin-releasing hormone (GnRH) which activates specific receptors (GnRHR) present at the surface of the pituitary gonadotropes to trigger secretion of the two gonadotropins LH and FSH. A unique feature of this system is the high dependence on the secretion mode of GnRH, which is basically pulsatile but undergoes considerable fluctuations in pulse frequency pattern in response to endogenous or external factors. How the physiological fluctuations of GnRH secretion that orchestrate normal reproduction are decoded by the gonadotrope cell machinery to ultimately control gonadotropin release and/or subunit gene transcription has been the subject of intensive studies during the past decades. Surprisingly, the mammalian GnRHR is unique among G protein-coupled receptor family as it lacks the carboxy-terminal tail usually involved in classical endocytotic process. Accordingly, it does not desensitize properly and internalizes very poorly. Both this atypical intrinsic property and post-receptor events may thus contribute to decode the GnRH signal. This includes the participation of a network of signaling pathways that differently respond to GnRH together with a growing amount of genes differentially sensitive to pulse frequency. Among these are two pairs of genes, the transcription factors EGR-1 and NAB, and the regulatory factors activin and follistatin, that function as intracellular autoregulatory feedback loops controlling respectively LHbeta and FSHbeta gene expression and hence, LH and FSH synthesis. Pituitary gonadotropes thus represent a unique model of cells functionally adapted to respond to a considerably fluctuating neuroendocrine stimulation, from short individual pulses to sustained GnRH as observed at the proestrus of ovarian cycle. Altogether, the data emphasize the adaptative reciprocal complementarity of hypothalamic GnRH neurones and pituitary gonadotropes to function as an original unit

    Direct Evidence for the Co-Expression of URP and GnRH in a Sub-Population of Rat Hypothalamic Neurones: Anatomical and Functional Correlation

    Get PDF
    Urotensin-II-related peptide (URP) is an eight amino-acid neuropeptide recently isolated from rat brain and considered as the endogenous ligand for the GPR14 receptor. Using single and double immunohistochemical labelling, in situ hybridization and ultrastructural immunocytochemistry, we explored the cellular and subcellular localization of URP in the male rat brain. URP peptide was detected in numerous varicose fibres of the median eminence (ME) and organum vasculosum laminae terminalis (OVLT) as well as in neuronal cell bodies of the medial septal nucleus and diagonal band of Broca where corresponding mRNA were also detected. Combining in situ hybridization with immunohistochemistry, we showed that cell bodies of the rat anterior hypothalamus contained both URP mRNA and GnRH peptide. In addition, double ultrastructural immunodetection of URP and GnRH peptides clearly revealed, in the median eminence, the co-localization of both peptides in the same neuronal processes in the vicinity of fenestrated portal vessels. This remarkable cellular and subcellular distribution led us to test the effect of URP on the GnRH-induced gonadotrophins release in the anterior pituitary, and to discuss its putative role at the level of the median eminence

    Sustained Gonadotropin-Releasing Hormone Stimulation Mobilizes the cAMP/PKA Pathway to Induce Nitric Oxide Synthase Type 1 Expression in Rat Pituitary Cells In Vitro and In Vivo at Proestrus.

    No full text
    International audiencePrevious in vivo studies have established that pituitary nitric oxide synthase type 1 (NOS1) is regulated by gonadotropin-releasing hormone (GnRH). The aim of our study was to elucidate the mechanisms of NOS1 regulation by GnRH in rat pituitary cells. Using a perifused cell system, we demonstrated that NOS1 induction was sensitive to GnRH pulse frequency and was maximally induced under continuous GnRH stimulation. In primary cultures of rat pituitary cells, sustained stimulation with the GnRH agonist triptorelin (GnRHa) increased NOS1 protein levels, whereas NOS2 and NOS3 levels were unaffected. NOS1 up-regulation occurred in gonadotroph cells only, in a time-dependent and concentration-dependent manner (maximum increase, 2.5-fold; half-maximal concentration, 0.17 nM). GnRHa effect was mimicked by cAMP pathway activators and, most importantly, was blocked by disruption of the protein kinase A (PKA) pathway using pharmacological inhibitors such as Rp-cAMP or drug phosphatase technology-protein kinase inhibitor (DPT-PKI), a cell-permeant PKI peptide. In contrast, modulation of the PKC pathway and inhibition of the MAPK cascade were ineffective. Overall, these experiments demonstrated that GnRH-induced up-regulation of pituitary NOS1 is mediated notably by the cAMP/PKA pathway. Last, in vivo administration of a GnRH antagonist markedly inhibited the pituitary cAMP rise at proestrus in addition to suppressing NOS1 increase. Altogether, our data suggest that the cAMP/PKA signaling pathway is preferentially recruited under sustained GnRH stimulation in vivo during proestrus, allowing the expression of a specific set of PKA-regulated proteins, including NOS1, in gonadotroph cells

    The GnRH receptor and the response of gonadotrope cells to GnRH pulse frequency code. A story of an atypical adaptation of cell function relying on a lack of receptor homologous desensitization.

    No full text
    Brain control of the reproductive system is mediated through hypothalamic gonadotropin-releasing hormone (GnRH) which activates specific receptors (GnRHR) present at the surface of the pituitary gonadotropes to trigger secretion of the two gonadotropins LH and FSH. A unique feature of this system is the high dependence on the secretion mode of GnRH, which is basically pulsatile but undergoes considerable fluctuations in pulse frequency pattern in response to endogenous or external factors. How the physiological fluctuations of GnRH secretion that orchestrate normal reproduction are decoded by the gonadotrope cell machinery to ultimately control gonadotropin release and/or subunit gene transcription has been the subject of intensive studies during the past decades. Surprisingly, the mammalian GnRHR is unique among G protein-coupled receptor family as it lacks the carboxy-terminal tail usually involved in classical endocytotic process. Accordingly, it does not desensitize properly and internalizes very poorly. Both this atypical intrinsic property and post-receptor events may thus contribute to decode the GnRH signal. This includes the participation of a network of signaling pathways that differently respond to GnRH together with a growing amount of genes differentially sensitive to pulse frequency. Among these are two pairs of genes, the transcription factors EGR-1 and NAB, and the regulatory factors activin and follistatin, that function as intracellular autoregulatory feedback loops controlling respectively LHbeta and FSHbeta gene expression and hence, LH and FSH synthesis. Pituitary gonadotropes thus represent a unique model of cells functionally adapted to respond to a considerably fluctuating neuroendocrine stimulation, from short individual pulses to sustained GnRH as observed at the proestrus of ovarian cycle. Altogether, the data emphasize the adaptative reciprocal complementarity of hypothalamic GnRH neurones and pituitary gonadotropes to function as an original unit

    FSH inhibits AMH to support ovarian estradiol synthesis in infantile mice

    No full text
    International audienceAnti-Mullerian hormone (AMH) regulates ovarian function in cyclic females, notably by preventing premature follicle-stimulating hormone (FSH)-mediated follicular growth and steroidogenesis. Its expression in growing follicles is controlled by FSH and by estradiol (E2). In infantile females, there is a transient increase in the activity of the gonadotrope axis, as reflected by elevated levels of both gonadotropins and E2. We previously demonstrated in mice that elevated FSH concentrations are necessary to induce E2 production by preantral/early antral follicles through the stimulation of aromatase expression without supporting their growth. However, whether this action of FSH could involve AMH is unknown. Here, we show that Amh mRNA and protein abundance and serum AMH levels are elevated in infantile mouse females, compared with those in adults. By experimentally manipulating FSH and E2 levels in infantile mice, we demonstrate that high FSH concentrations lower Amh expression specifically in preantral/early antral follicles, whereas E2 has no effect. Importantly, treatment of infantile ovaries in organotypic cultures with AMH decreases FSH-mediated expression of Cyp19a1 aromatase, but it does not alter the expression of cyclin D2-mediating granulosa cell proliferation. Overall, our data indicate that the infantile elevation in FSH levels suppresses Amh expression in preantral/early antral follicles, thereby favoring Cyp19a1 aromatase expression and E2 production. Together with recent discoveries that AMH can act on both the hypothalamus and the pituitary to increase gonadotropin levels, this work suggests that AMH is a critical regulator of the gonadotrope axis during the infantile period, thereby contributing to adult reproductive function programming
    corecore