38 research outputs found

    Low divergent, high-power, single-mode terahertz wire lasers

    Get PDF
    We devise arrays of surface emitting THz QCLs exploiting two novel lithographic configurations: a) a dual periodicity slit architecture and b) corrugated sinusoidal wire laser cavities. Extremely low divergent optical beams, with up to 85 mW of emitted optical powers and 245 mV/A slope efficiencies have been reached

    High Dynamic Range, Heterogeneous, Terahertz Quantum Cascade Lasers Featuring Thermally Tunable Frequency Comb Operation over a Broad Current Range

    Get PDF
    We report on the engineering of broadband quantum cascade lasers (QCLs) emitting at Terahertz (THz) frequencies, which exploit a heterogeneous active region scheme and have a current density dynamic range (Jdr) of 3.2, significantly larger than the state-of-the-art, over a 1.3 THz bandwidth. We demonstrate that the devised broadband lasers operate as THz optical frequency comb synthesizers, in continuous-wave, with a maximum optical output power of 4 mW (0.73 mW in the comb regime). Measurement of the intermode beatnote map reveals a clear dispersion-compensated frequency comb regime extending over a continuous 106 mA current range (current density dynamic range of 1.24), significantly broader than the state-of-the-art at similar geometries, with a corresponding emission bandwidth of ≈1.05 THz and a stable and narrow (4.15 kHz) beatnote detected with a signal-to-noise ratio of 34 dB. Analysis of the electrical and thermal beatnote tuning reveals a current-tuning coefficient ranging between 5 and 2.1 MHz/mA and a temperature-tuning coefficient of −4 MHz/K. The ability to tune the THz QCL combs over their full operating dynamic range, by temperature and current, paves the way for their use as a powerful spectroscopy tool that can provide broad frequency coverage combined with high precision spectral accuracy

    Continuous-wave highly-efficient low-divergence terahertz wire lasers.

    Get PDF
    Terahertz (THz) quantum cascade lasers (QCLs) have undergone rapid development since their demonstration, showing high power, broad-tunability, quantum-limited linewidth, and ultra-broadband gain. Typically, to address applications needs, continuous-wave (CW) operation, low-divergent beam profiles and fine spectral control of the emitted radiation, are required. This, however, is very difficult to achieve in practice. Lithographic patterning has been extensively used to this purpose (via distributed feedback (DFB), photonic crystals or microcavities), to optimize either the beam divergence or the emission frequency, or, both of them simultaneously, in third-order DFBs, via a demanding fabrication procedure that precisely constrains the mode index to 3. Here, we demonstrate wire DFB THz QCLs, in which feedback is provided by a sinusoidal corrugation of the cavity, defining the frequency, while light extraction is ensured by an array of surface holes. This new architecture, extendable to a broad range of far-infrared frequencies, has led to the achievement of low-divergent beams (10°), single-mode emission, high slope efficiencies (250 mW/A), and stable CW operation

    Broadband heterogeneous terahertz frequency quantum cascade laser

    Get PDF
    The authors demonstrate a broadband, heterogeneous terahertz frequency quantum cascade laser by exploiting an active region design based on longitudinal optical-phonon-assisted interminiband transitions. They obtain continuous wave laser emission with a threshold current density of ~120 A/cm 2 , a dynamic range of ~3.1, and an emission spectrum spanning from 2.4 to 3.4 THz at 15 K

    Terahertz Frequency Combs Exploiting an On-Chip, Solution-Processed, Graphene-Quantum Cascade Laser Coupled-Cavity.

    Get PDF
    The ability to engineer quantum-cascade-lasers (QCLs) with ultrabroad gain spectra, and with a full compensation of the group velocity dispersion, at terahertz (THz) frequencies, is key for devising monolithic and miniaturized optical frequency-comb-synthesizers (FCSs) in the far-infrared. In THz QCLs four-wave mixing, driven by intrinsic third-order susceptibility of the intersubband gain medium, self-locks the optical modes in phase, allowing stable comb operation, albeit over a restricted dynamic range (∌20% of the laser operational range). Here, we engineer miniaturized THz FCSs, comprising a heterogeneous THz QCL, integrated with a tightly coupled, on-chip, solution-processed, graphene saturable-absorber reflector that preserves phase-coherence between lasing modes, even when four-wave mixing no longer provides dispersion compensation. This enables a high-power (8 mW) FCS with over 90 optical modes, through 55% of the laser operational range. We also achieve stable injection-locking, paving the way to a number of key applications, including high-precision tunable broadband-spectroscopy and quantum-metrology

    Bullying and Victimization in Overweight and Obese Outpatient Children and Adolescents: An Italian Multicentric Study

    Get PDF
    Objective Being overweight or obese is one of the most common reasons that children and adolescents are teased at school. We carried out a study in order to investigate: i) the relation between weight status and school bullying and ii) the relation between weight status categories and types of victimization and bullying in an outpatient sample of Italian children and adolescents with different degrees of overweight from minimal overweight up to severe obesity. Participants/Methods Nine-hundred-forty-seven outpatient children and adolescents (age range 6.0'14.0 years) were recruited in 14 hospitals distributed over the country of Italy. The participants were classified as normal-weight (N = 129), overweight (N = 126), moderately obese (N = 568), and severely obese (N = 124). The nature and extent of verbal, physical and relational bullying and victimization were assessed with an adapted version of the revised Olweus bully-victim questionnaire. Each participant was coded as bully, victim, bully-victim, or not involved. Results Normal-weight and overweight participants were less involved in bullying than obese participants; severely obese males were more involved in the double role of bully and victim. Severely obese children and adolescents suffered not only from verbal victimization but also from physical victimization and exclusion from group activities. Weight status categories were not directly related to bullying behaviour; however severely obese males perpetrated more bullying behaviour compared to severely obese females. Conclusions Obesity and bullying among children and adolescents are of ongoing concern worldwide and may be closely related. Common strategies of intervention are needed to cope with these two social health challenges

    Tunable and compact dispersion compensation of broadband THz quantum cascade laser frequency combs

    Get PDF
    Miniaturized frequency combs (FCs) can be self-generated at terahertz (THz) frequencies through four-wave mixing in the cavity of a quantum cascade laser (QCL). To date, however, stable comb operation is only observed over a small operational current range in which the bias-depended chromatic dispersion is compensated. As most dispersion compensation techniques in the THz range are not tunable, this limits the spectral coverage of the comb and the emitted output power, restricting potential applications in, for example, metrology and ultrashort THz pulse generation. Here, we demonstrate an alternative architecture that provides a tunable, lithographically independent, control of the free-running coherence properties of THz QCL FCs. This is achieved by integrating an on-chip tightly coupled mirror with the QCL cavity, providing an external cavity and hence a tunable Gires Tournois interferometer (GTI). By finely adjusting the gap between the GTI and the back-facet of an ultra-broadband, high dynamic range QCL, we attain wide dispersion compensation regions, where stable and narrow (~3 kHz linewidth) single beatnotes extend over an operation range that is significantly larger than that of dispersion-dominated bare laser cavity counterparts. Significant reduction of the phase noise is registered over the whole QCL spectral bandwidth (1.35 THz). This agile accommodation of a tunable dispersion compensator will help enable uptake of QCL-combs for metrological, spectroscopic and quantum technology−oriented applications

    THz quantum cascade laser frequency combs

    Get PDF
    We demonstrate THz optical frequency comb (FC) operation based on ultra-broadband, record dynamic range Quantum Cascade Lasers (QCLs) which exploit a heterogeneous active region design to achieve low and flat chromatic dispersion at the center of the gain curve. By implementing a Gires-Tournois Interferometer (GTI), as tightly coupled at one end of the QCL cavity, we provide lithographically-independent control of the free-running coherence properties of such THz-QCL FC and attain wide dispersion compensation regions, where stable and narrow (~3 kHz linewidth) single beatnotes extend over an operation range that is significantly larger than that of dispersiondominated bare laser cavity counterparts

    Quantum cascade laser based hybrid dual comb spectrometer

    Get PDF
    Four-wave-mixing-based quantum cascade laser frequency combs (QCL-FC) are a powerful photonic tool, driving a recent revolution in major molecular fingerprint regions, i.e. mid- and far-infrared domains. Their compact and frequency-agile design, together with their high optical power and spectral purity, promise to deliver an all-in-one source for the most challenging spectroscopic applications. Here, we demonstrate a metrological-grade hybrid dual comb spectrometer, combining the advantages of a THz QCL-FC with the accuracy and absolute frequency referencing provided by a free-standing, optically-rectified THz frequency comb. A proof-of-principle application to methanol molecular transitions is presented. The multi-heterodyne molecular spectra retrieved provide state-of-the-art results in line-center determination, achieving the same precision as currently available molecular databases. The devised setup provides a solid platform for a new generation of THz spectrometers, paving the way to more refined and sophisticated systems exploiting full phase control of QCL-FCs, or Doppler-free spectroscopic schemes

    Fully Phase Stabilized Quantum Cascade Laser Frequency Comb

    Get PDF
    The road towards the realization of quantum cascade laser (QCL) frequency combs [1,2] has undoubtedly attracted ubiquitous attention from the scientific community. These devices promise to deliver an all-in-one (i.e. a single, miniature, active device) frequency comb synthesizer in a range as wide as the QCL spectral coverage itself (from about 4 microns to the THz range), with the unique possibility to tailor their spectral emission by band structure engineering. For these reasons, vigorous efforts have been spent to characterize the emission of four-wave-mixing (FWM) multi-frequency QCLs, aiming to seize their comb-like mode-locked operation [3–6]
    corecore