20 research outputs found

    Gene Bionetwork Analysis of Ovarian Primordial Follicle Development

    Get PDF
    Ovarian primordial follicles are critical for female reproduction and comprise a finite pool of gametes arrested in development. A systems biology approach was used to identify regulatory gene networks essential for primordial follicle development. Transcriptional responses to eight different growth factors known to influence primordial follicles were used to construct a bionetwork of regulatory genes involved in rat primordial follicle development. Over 1,500 genes were found to be regulated by the various growth factors and a network analysis identified critical gene modules involved in a number of signaling pathways and cellular processes. A set of 55 genes was identified as potential critical regulators of these gene modules, and a sub-network associated with development was determined. Within the network two previously identified regulatory genes were confirmed (i.e., Pdgfa and Fgfr2) and a new factor was identified, connective tissue growth factor (CTGF). CTGF was tested in ovarian organ cultures and found to stimulate primordial follicle development. Therefore, the relevant gene network associated with primordial follicle development was validated and the critical genes and pathways involved in this process were identified. This is one of the first applications of network analysis to a normal developmental process. These observations provide insights into potential therapeutic targets for preventing ovarian disease and promoting female reproduction

    Current achievements and future research directions in ovarian tissue culture, in vitro follicle development and transplantation: implications for fertility preservation

    Get PDF
    Female cancer patients are offered 'banking' of gametes before starting fertility-threatening cancer therapy. Transplants of fresh and frozen ovarian tissue between healthy fertile and infertile women have demonstrated the utility of the tissue banked for restoration of endocrine and fertility function. Additional methods, like follicle culture and isolated follicle transplantation, are in development. Specialist reproductive medicine scientists and clinicians with complementary expertise in ovarian tissue culture and transplantation presented relevant published literature in their field of expertise and also unpublished promising data for discussion. As the major aims were to identify the current gaps prohibiting advancement, to share technical experience and to orient new research, contributors were allowed to provide their opinioned expert views on future research. Normal healthy children have been born in cancer survivors after orthotopic transplantation of their cryopreserved ovarian tissue. Longevity of the graft might be optimized by using new vitrification techniques and by promoting rapid revascularization of the graft. For the in vitro culture of follicles, a successive battery of culture methods including the use of defined media, growth factors and three-dimensional extracellular matrix support might overcome growth arrest of the follicles. Molecular methods and immunoassay can evaluate stage of maturation and guide adequate differentiation. Large animals, including non-human primates, are essential working models. Experiments on ovarian tissue from non-human primate models and from consenting fertile and infertile patients benefit from a multidisciplinary approach. The new discipline of oncofertility requires professionalization, multidisciplinarity and mobilization of funding for basic and translational research

    Does ‘Dual Trigger’ Increase Oocyte Maturation Rate?

    No full text
    The aim of this study was to evaluate the oocyte maturation rate when GnRH-a and hCG (dual trigger) are co-administered, compared to the standard hCG trigger within the same patient. Included in the study were GnRH antagonist ICSI cycles performed in 137 patients who had a standard hCG trigger cycle and a dual trigger cycle between 1/1/2013 and 31/12/2017. The mean patient age (35.9 ± 5.6 and 35.2 ± 5.9; <0.001), FSH dose (4140 ± 2065 and 3585 ± 1858; <0.01), number of retrieved oocytes (10.3 ± 6.2 and 8.9 ± 6.1; 0.011) were higher in the dual trigger group compared to the hCG trigger group, oocyte maturation rate was identical. Maturation rate following dual trigger was significantly higher among 34 patients who had a maturation rate of <70% following hCG triggering and among 16 patients with a maturation rate <50% rate following hCG trigger (54% vs. 74%, p < .001 and 44% vs. 73%, p = .006; respectively). In conclusion, co-administration of GnRH agonist and hCG for final oocyte maturation substantially increased the oocyte maturation rate in patients with low oocyte maturation rate in their hCG triggered cycle, but not in an unselected population of patients.IMPACT STATEMENT What is already known on this subject? The co-administration of GnRH agonist and hCG for final oocyte maturation prior to oocyte retrieval may improve IVF outcome in patients with a high proportion of immature oocytes. The few studies on dual trigger in patients with a high proportion of immature oocytes or in normal responders have shown conflicting results. What do the results of this study add? We found that co-administration of GnRH agonist and hCG for final oocyte maturation substantially increased the oocyte maturation rate in patients with low oocyte maturation rate in their hCG triggered cycle, but not in an unselected population of patients. What are the implications of these findings for clinical practice and/or further research? The results of this study implicate that in selected population with low oocyte maturation rate, there is an advantage in using dual trigger. However, larger prospective trials are warranted to better assess oocyte response in dual trigger
    corecore