7 research outputs found

    Cold adaptation drives population genomic divergence in the ecological specialist, Drosophila montana

    Get PDF
    Funding: UK Natural Environment Research Council (Grant Number(s): NE/L501852/1, NE/P000592/1); Academy of Finland (GrantNumber(s): 267244, 268214, 322980), Ella ja Georg Ehrnroothin SÀÀtiö.Detecting signatures of ecological adaptation in comparative genomics is challenging, but analysing population samples with characterised geographic distributions, such as clinal variation, can help identify genes showing covariation with important ecological variation. Here, we analysed patterns of geographic variation in the cold-adapted species Drosophila montana across phenotypes, genotypes and environmental conditions and tested for signatures of cold adaptation in population genomic divergence. We first derived the climatic variables associated with the geographic distribution of 24 populations across two continents to trace the scale of environmental variation experienced by the species, and measured variation in the cold tolerance of the flies of six populations from different geographic contexts. We then performed pooled whole genome sequencing of these six populations, and used Bayesian methods to identify SNPs where genetic differentiation is associated with both climatic variables and the population phenotypic measurements, while controlling for effects of demography and population structure. The top candidate SNPs were enriched on the X and fourth chromosomes, and they also lay near genes implicated in other studies of cold tolerance and population divergence in this species and its close relatives. We conclude that ecological adaptation has contributed to the divergence of D. montana populations throughout the genome and in particular on the X and fourth chromosomes, which also showed highest interpopulation FST. This study demonstrates that ecological selection can drive genomic divergence at different scales, from candidate genes to chromosome-wide effects.Publisher PDFPeer reviewe

    The genetic basis of a recent transition to live-bearing in marine snails

    No full text
    Key innovations are fundamental to biological diversification, but their genetic basis is poorly understood. A recent transition from egg-laying to live-bearing in marine snails (Littorina spp.) provides the opportunity to study the genetic architecture of an innovation that has evolved repeatedly across animals. Individuals do not cluster by reproductive mode in a genome-wide phylogeny, but local genealogical analysis revealed numerous small genomic regions where all live-bearers carry the same core haplotype. Candidate regions show evidence for live-bearer–specific positive selection and are enriched for genes that are differentially expressed between egg-laying and live-bearing reproductive systems. Ages of selective sweeps suggest that live-bearer–specific alleles accumulated over more than 200,000 generations. Our results suggest that new functions evolve through the recruitment of many alleles rather than in a single evolutionary step

    Toward the integration of speciation research

    No full text
    Speciation research—the scientific field focused on understanding the origin and diversity of species—has a long and complex history. While relevant to one another, the specific goals and activities of speciation researchers are highly diverse, and scattered across a collection of different perspectives. Thus, our understanding of speciation will benefit from efforts to bridge scientific findings and the diverse people who do the work. In this paper, we outline two ways of integrating speciation research: (i) scientific integration, through the bringing together of ideas, data, and approaches; and (ii) social integration, by creating ways for a diversity of researchers to participate in the scientific process. We then discuss five challenges to integration: (i) the multidisciplinary nature of speciation research, (ii) the complex language of speciation; (iii) a bias toward certain study systems; (iv) the challenges of working across scales; and (v) inconsistent measures and reporting standards. We provide practical steps that individuals and groups can take to help overcome these challenges, and argue that integration is a team effort in which we all have a role to play

    Toward the integration of speciation research

    No full text
    International audienceSpeciation research—the scientific field focused on understanding the origin and diversity of species—has a long and complex history. While relevant to one another, the specific goals and activities of speciation researchers are highly diverse, and scattered across a collection of different perspectives. Thus, our understanding of speciation will benefit from efforts to bridge scientific findings and the diverse people who do the work. In this paper, we outline two ways of integrating speciation research: (i) scientific integration, through the bringing together of ideas, data, and approaches; and (ii) social integration, by creating ways for a diversity of researchers to participate in the scientific process. We then discuss five challenges to integration: (i) the multidisciplinary nature of speciation research, (ii) the complex language of speciation; (iii) a bias toward certain study systems; (iv) the challenges of working across scales; and (v) inconsistent measures and reporting standards. We provide practical steps that individuals and groups can take to help overcome these challenges and argue that integration is a team effort in which we all have a role to play
    corecore