37 research outputs found

    Electronic disorder of P- and B-doped Si at the metal-insulator transition investigated by scanning tunnelling microscopy and electronic transport

    Get PDF
    The (111)-2 × 1 surface of in situ cleaved heavily P- or B-doped Si is investigated by scanning tunnelling microscopy and spectroscopy at room temperature and at low temperature. P atoms have been identified on different sites of the Si(111)-2 × 1 surface by their characteristic voltage-dependent contrast for positive as well as negative buckling of the π-bonded chains. The distributions of dopants per surface area and of nearest-neighbour distances are found to be in agreement with a random arrangement of dopants in Si up to doping levels well above the metal–insulator transition. In addition, P atoms have been identified by their depth-dependent contrast down to the third layer beneath the surface with a volume density in agreement with the bulk doping density. The random electronic disorder supports the view of an Anderson transition driven by disorder close to the critical concentration or critical uniaxial stress

    Band structure related wave function symmetry of amphoteric Si dopants in GaAs

    Full text link
    Autocompensated Si-doped GaAs is studied with cross-sectional scanning tunneling spectroscopy (X-STS). The local electronic contrasts of substitutional Si(Ga) donors and Si(As) acceptors under the (110) cleavage plane are imaged with high resolution. Si(Ga) donor atoms exhibit radially symmetric contrasts. Si(As) acceptors have anisotropic features. The anisotropic acceptor contrasts are traced back to a tunnel process at the valence band edge. They reflect the probability density distribution of the localized acceptor hole state.Comment: 10 pages, 3 figure

    GaSb/GaAs quantum dot formation and demolition studied with cross-sectional scanning tunneling microscopy

    Get PDF
    We present a cross-sectional scanning tunneling microscopy study of GaSb/GaAs quantum dots grown by molecular beam epitaxy. Various nanostructures are observed as a function of the growth parameters. During growth, relaxation of the high local strain fields of the nanostructures plays an important role in their formation. Pyramidal dots with a high Sb content are often accompanied by threading dislocations above them. GaSb ring formation is favored by the use of a thin GaAs first cap layer and a high growth temperature of the second cap layer. At these capping conditions, strain-driven Sb diffusion combined with As/Sb exchange and Sb segregation remove the center of a nanostructure, creating a ring. Clusters of GaSb without a well defined morphology also appear regularly, often with a highly inhomogeneous structure which is sometimes divided up in fragments. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3701614

    Linking structural and electronic properties of high-purity self-assembled GaSb/GaAs quantum dots

    Get PDF
    We present structural, electrical, and theoretical investigations of self-assembled type-II GaSb/GaAs quantum dots (QDs) grown by molecular beam epitaxy. Using cross-sectional scanning tunneling microscopy (X-STM) the morphology of the QDs is determined. The QDs are of high purity (similar to 100% GaSb content) and have most likely the shape of a truncated pyramid. The average heights of the QDs are 4-6 nm with average base lengths between 9 and 14 nm. Samples with a QD layer embedded into a pn-diode structure are studied with deep-level transient spectroscopy (DLTS), yielding a hole localization energy in the QDs of 609 meV. Based on the X-STM results the electronic structure of the QDs is calculated using 8-band k.p theory. The theoretical localization energies are found to be in good agreement with the DLTS results. Our results also allow us to estimate how variations in size and shape of the dots influence the hole localization energy

    Single Si dopants in GaAs studied by scanning tunneling microscopy and spectroscopy

    No full text
    We present a comprehensive scanning tunneling microscopy and spectroscopy study of individual Si dopants in GaAs. We explain all the spectroscopic peaks and their voltage dependence in the band gap and in the conduction band. We observe both the filled and empty donor state. Donors close to the surface, which have an enhanced binding energy, show a second ionization ring, corresponding to the negatively charged donor D-. The observation of all predicted features at the expected spectral position and with the expected voltage-distance dependence confirms their correct identification and the semiquantitative analyses of their energetic positions

    Controlled charge switching on a single donor with a scanning tunneling microscope

    Get PDF
    The charge state of individually addressable impurities in semiconductor material was manipulated with a scanning tunneling microscope. The manipulation was fully controlled by the position of the tip and the voltage applied between tip and sample. The experiments were performed at low temperature on the {110} surface of silicon doped GaAs. Silicon donors up to 1 nm below the surface can be reversibly switched between their neutral and ionized state by the local potential induced by the tip. By using ultrasharp tips, the switching process occurs close enough to the impurity to be observed as a sharp circular feature surrounding the donor. By utilizing the controlled manipulation, we were able to map the Coulomb potential of a single donor at the semiconductor-vacuum interface

    Bistable charge configuration of donor systems near the GaAs(110) surfaces

    No full text
    In gated semiconductor devices, the space charge layer that is located under the gate electrode acts as the functional element. With increasing gate voltage, the microscopic process forming this space charge layer involves the subsequent ionization or electron capture of individual dopants within the semiconductor. In this Letter, a scanning tunneling microscope tip is used as a movable gate above the (110) surface of n-doped GaAs. We study the build-up process of the space charge region considering donors and visualize the charge states of individual and multi donor systems. The charge configuration of single donors is determined by the position of the tip and the applied gate voltage. In contrast, a two donor system with interdonor distances smaller than 10 nm shows a more complex behavior. The electrostatic interaction between the donors in combination with the modification of their electronic properties close to the surface results in ionization gaps and bistable charge switching behavior

    Atomically precise impurity identification and modification on the manganese doped GaAs(110) surface with scanning tunneling microscopy

    Get PDF
    Cross-sectional scanning tunneling microscopy (STM) measurements on molecular beam epitaxy grown Mn doped GaAs(110) at 5 and 77 K are presented. The enhanced mechanical stability of the STM at low temperature allows a detailed study of the electronic contrast of Mn atoms in the GaAs(110) surface. According to reproducible and distinguishable contrast patterns of single Mn atoms, we present statistical evidence for a layer by layer identification of Mn atoms embedded in the first few monatomic layers of the crystal. A comparison with a bulklike theoretical approach reveals a semiquantitative agreement with the measurements. Remaining differences between theory and experiment indicate the influence of the surface as an important factor to understand the contrast of impurities close to the surface. Furthermore, we report the injection of transition-metal atoms into the surface. Finally, reproducible complexes consisting of a surface Mn and an adsorbate atom are found and manipulated
    corecore